137 research outputs found

    Investigation of performance issues affecting optical circuit and packet switched WDM networks

    Get PDF
    Optical switching represents the next step in the evolution of optical networks. This thesis describes work that was carried out to examine performance issues which can occur in two distinct varieties of optical switching networks. Slow optical switching in which lightpaths are requested, provisioned and torn down when no longer required is known as optical circuit switching (OCS). Services enabled by OCS include wavelength routing, dynamic bandwidth allocation and protection switching. With network elements such as reconfigurable optical add/drop multiplexers (ROADMs) and optical cross connects (OXCs) now being deployed along with the generalized multiprotocol label switching (GMPLS) control plane this represents the current state of the art in commercial networks. These networks often employ erbium doped fiber amplifiers (EDFAs) to boost the optical signal to noise ratio of the WDM channels and as channel configurations change, wavelength dependent gain variations in the EDFAs can lead to channel power divergence that can result in significant performance degradation. This issue is examined in detail using a reconfigurable wavelength division multiplexed (WDM) network testbed and results show the severe impact that channel reconfiguration can have on transmission performance. Following the slow switching work the focus shifts to one of the key enabling technologies for fast optical switching, namely the tunable laser. Tunable lasers which can switch on the nanosecond timescale will be required in the transmitters and wavelength converters of optical packet switching networks. The switching times and frequency drifts, both of commercially available lasers, and of novel devices are investigated and performance issues which can arise due to this frequency drift are examined. An optical packet switching transmitter based on a novel label switching technique and employing one of the fast tunable lasers is designed and employed in a dual channel WDM packet switching system. In depth performance evaluations of this labelling scheme and packet switching system show the detrimental impact that wavelength drift can have on such systems

    A scalable silicon photonic chip-scale optical switch for high performance computing systems

    Get PDF
    This paper discusses the architecture and provides performance studies of a silicon photonic chip-scale optical switch for scalable interconnect network in high performance computing systems. The proposed switch exploits optical wavelength parallelism and wavelength routing characteristics of an Arrayed Waveguide Grating Router (AWGR) to allow contention resolution in the wavelength domain. Simulation results from a cycle-accurate network simulator indicate that, even with only two transmitter/receiver pairs per node, the switch exhibits lower end-to-end latency and higher throughput at high (> 90%) input loads compared with electronic switches. On the device integration level, we propose to integrate all the components (ring modulators, photodetectors and AWGR) on a CMOS-compatible silicon photonic platform to ensure a compact, energy efficient and cost-effective device. We successfully demonstrate proof-of-concept routing functions on an 8 x 8 prototype fabricated using foundry services provided by OpSIS-IME. (C) 2013 Optical Society of Americ

    On wavelength-routed networks with reversible wavelength channels

    Get PDF
    published_or_final_versio

    Optical Switching for Scalable Data Centre Networks

    Get PDF
    This thesis explores the use of wavelength tuneable transmitters and control systems within the context of scalable, optically switched data centre networks. Modern data centres require innovative networking solutions to meet their growing power, bandwidth, and scalability requirements. Wavelength routed optical burst switching (WROBS) can meet these demands by applying agile wavelength tuneable transmitters at the edge of a passive network fabric. Through experimental investigation of an example WROBS network, the transmitter is shown to determine system performance, and must support ultra-fast switching as well as power efficient transmission. This thesis describes an intelligent optical transmitter capable of wideband sub-nanosecond wavelength switching and low-loss modulation. A regression optimiser is introduced that applies frequency-domain feedback to automatically enable fast tuneable laser reconfiguration. Through simulation and experiment, the optimised laser is shown to support 122×50 GHz channels, switching in less than 10 ns. The laser is deployed as a component within a new wavelength tuneable source (WTS) composed of two time-interleaved tuneable lasers and two semiconductor optical amplifiers. Switching over 6.05 THz is demonstrated, with stable switch times of 547 ps, a record result. The WTS scales well in terms of chip-space and bandwidth, constituting the first demonstration of scalable, sub-nanosecond optical switching. The power efficiency of the intelligent optical transmitter is further improved by introduction of a novel low-loss split-carrier modulator. The design is evaluated using 112 Gb/s/λ intensity modulated, direct-detection signals and a single-ended photodiode receiver. The split-carrier transmitter is shown to achieve hard decision forward error correction ready performance after 2 km of transmission using a laser output power of just 0 dBm; a 5.2 dB improvement over the conventional transmitter. The results achieved in the course of this research allow for ultra-fast, wideband, intelligent optical transmitters that can be applied in the design of all-optical data centres for power efficient, scalable networking

    Control Plane Hardware Design for Optical Packet Switched Data Centre Networks

    Get PDF
    Optical packet switching for intra-data centre networks is key to addressing traffic requirements. Photonic integration and wavelength division multiplexing (WDM) can overcome bandwidth limits in switching systems. A promising technology to build a nanosecond-reconfigurable photonic-integrated switch, compatible with WDM, is the semiconductor optical amplifier (SOA). SOAs are typically used as gating elements in a broadcast-and-select (B\&S) configuration, to build an optical crossbar switch. For larger-size switching, a three-stage Clos network, based on crossbar nodes, is a viable architecture. However, the design of the switch control plane, is one of the barriers to packet switching; it should run on packet timescales, which becomes increasingly challenging as line rates get higher. The scheduler, used for the allocation of switch paths, limits control clock speed. To this end, the research contribution was the design of highly parallel hardware schedulers for crossbar and Clos network switches. On a field-programmable gate array (FPGA), the minimum scheduler clock period achieved was 5.0~ns and 5.4~ns, for a 32-port crossbar and Clos switch, respectively. By using parallel path allocation modules, one per Clos node, a minimum clock period of 7.0~ns was achieved, for a 256-port switch. For scheduler application-specific integrated circuit (ASIC) synthesis, this reduces to 2.0~ns; a record result enabling scalable packet switching. Furthermore, the control plane was demonstrated experimentally. Moreover, a cycle-accurate network emulator was developed to evaluate switch performance. Results showed a switch saturation throughput at a traffic load 60\% of capacity, with sub-microsecond packet latency, for a 256-port Clos switch, outperforming state-of-the-art optical packet switches

    Architectures and performance of awg-based optical switching nodes for ip networks

    Full text link
    corecore