112 research outputs found

    Joint Detection and Decoding of High-Order Modulation Schemes for CDMA and OFDM Wireless Communications

    Get PDF
    Wireless communications call for high data rate, power and bandwidth efficient transmissions. High-order modulation schemes are suitable candidates for this purpose as the potential to reduce the symbol period is often limited by the multipath-induced intersymbol interference. In order to reduce the power consumption, and at the same time, to estimate time-variant wireless channels, we propose low-complexity, joint detection and decoding schemes for high-order modulation signals in this dissertation. We start with the iterative demodulation and decoding of high-order CPM signals for mobile communications. A low complexity, pilot symbol-assisted coherent modulation scheme is proposed that can significantly improve the bit error rate performance by efficiently exploiting the inherent memory structure of the CPM modulation. A noncoherent scheme based on multiple symbol differential detection is also proposed and the performances of the two schemes are simulated and compared. Second, two iterative demodulation and decoding schemes are proposed for quadrature amplitude modulated signals in flat fading channels. Both of them make use of the iterative channel estimation based on the data signal reconstructed from decoder output. The difference is that one of them has a threshold controller that only allows the data reconstructed with high reliability values to be used for iterative channel estimation, while the other one directly uses all reconstructed data. As the second scheme has much lower complexity with a performance similar to the best of the first one, we further apply it to the space-time coded CDMA Rake receiver in frequency-selective multipath channels. We will compare it to the pilot-aided demodulation scheme that uses a dedicated pilot signal for channel estimation. In the third part of the dissertation, we design anti-jamming multicarrier communication systems. Two types of jamming signals are considered - the partial-band tone jamming and the partial-time pulse jamming. We propose various iterative schemes to detect, estimate, and cancel the jamming signal in both AWGN and fading channels. Simulation results demonstrate that the proposed systems can provide reliable communications over a wide range of jamming-to-signal power ratios. Last, we study the problem of maximizing the throughput of a cellular multicarrier communication network with transmit or receive diversity. The total throughput of the network is maximized subject to power constraints on each mobile. We first extend the distributed water-pouring power control algorithm from single transmit and receive antenna to multiple transmit and receive antennas. Both equal power diversity and selective diversity are considered. We also propose a centralized power control algorithm based on the active set strategy and the gradient projection method. The performances of the two algorithms are assessed with simulation and compared with the equal power allocation algorithm

    Orthogonal multicarrier modulation for high-rates mobile and wireless communications

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN037085 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Scalable System Design for Covert MIMO Communications

    Get PDF
    In modern communication systems, bandwidth is a limited commodity. Bandwidth efficient systems are needed to meet the demands of the ever-increasing amount of data that users share. Of particular interest is the U.S. Military, where high-resolution pictures and video are used and shared. In these environments, covert communications are necessary while still providing high data rates. The promise of multi-antenna systems providing higher data rates has been shown on a small scale, but limitations in hardware prevent large systems from being implemented

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Secure OFDM System Design for Wireless Communications

    Get PDF
    Wireless communications is widely employed in modern society and plays an increasingly important role in people\u27s daily life. The broadcast nature of radio propagation, however, causes wireless communications particularly vulnerable to malicious attacks, and leads to critical challenges in securing the wireless transmission. Motivated by the insufficiency of traditional approaches to secure wireless communications, physical layer security that is emerging as a complement to the traditional upper-layer security mechanisms is investigated in this dissertation. Five novel techniques toward the physical layer security of wireless communications are proposed. The first two techniques focus on the security risk assessment in wireless networks to enable a situation-awareness based transmission protection. The third and fourth techniques utilize wireless medium characteristics to enhance the built-in security of wireless communication systems, so as to prevent passive eavesdropping. The last technique provides an embedded confidential signaling link for secure transmitter-receiver interaction in OFDM systems
    • …
    corecore