30 research outputs found

    Noisy Signal Recovery via Iterative Reweighted L1-Minimization

    Get PDF
    Compressed sensing has shown that it is possible to reconstruct sparse high dimensional signals from few linear measurements. In many cases, the solution can be obtained by solving an L1-minimization problem, and this method is accurate even in the presence of noise. Recent a modified version of this method, reweighted L1-minimization, has been suggested. Although no provable results have yet been attained, empirical studies have suggested the reweighted version outperforms the standard method. Here we analyze the reweighted L1-minimization method in the noisy case, and provide provable results showing an improvement in the error bound over the standard bounds

    A Simplified Approach to Recovery Conditions for Low Rank Matrices

    Get PDF
    Recovering sparse vectors and low-rank matrices from noisy linear measurements has been the focus of much recent research. Various reconstruction algorithms have been studied, including â„“1\ell_1 and nuclear norm minimization as well as â„“p\ell_p minimization with p<1p<1. These algorithms are known to succeed if certain conditions on the measurement map are satisfied. Proofs of robust recovery for matrices have so far been much more involved than in the vector case. In this paper, we show how several robust classes of recovery conditions can be extended from vectors to matrices in a simple and transparent way, leading to the best known restricted isometry and nullspace conditions for matrix recovery. Our results rely on the ability to "vectorize" matrices through the use of a key singular value inequality.Comment: 6 pages, This is a modified version of a paper submitted to ISIT 2011; Proc. Intl. Symp. Info. Theory (ISIT), Aug 201

    Improved sparse recovery thresholds with two-step reweighted â„“_1 minimization

    Get PDF
    It is well known that ℓ_1 minimization can be used to recover sufficiently sparse unknown signals from compressed linear measurements. In fact, exact thresholds on the sparsity, as a function of the ratio between the system dimensions, so that with high probability almost all sparse signals can be recovered from iid Gaussian measurements, have been computed and are referred to as “weak thresholds” [4]. In this paper, we introduce a reweighted ℓ_1 recovery algorithm composed of two steps: a standard ℓ_1 minimization step to identify a set of entries where the signal is likely to reside, and a weighted ℓ_1 minimization step where entries outside this set are penalized. For signals where the non-sparse component has iid Gaussian entries, we prove a “strict” improvement in the weak recovery threshold. Simulations suggest that the improvement can be quite impressive—over 20% in the example we consider
    corecore