203 research outputs found

    Noisy Network Coding with Partial DF

    Full text link
    In this paper, we propose a noisy network coding integrated with partial decode-and-forward relaying for single-source multicast discrete memoryless networks (DMN's). Our coding scheme generalizes the partial-decode-compress-and-forward scheme (Theorem 7) by Cover and El Gamal. This is the first time the theorem is generalized for DMN's such that each relay performs both partial decode-and-forward and compress-and-forward simultaneously. Our coding scheme simultaneously generalizes both noisy network coding by Lim, Kim, El Gamal, and Chung and distributed decode-and-forward by Lim, Kim, and Kim. It is not trivial to combine the two schemes because of inherent incompatibility in their encoding and decoding strategies. We solve this problem by sending the same long message over multiple blocks at the source and at the same time by letting the source find the auxiliary covering indices that carry information about the message simultaneously over all blocks.Comment: 5 pages, 1 figure, to appear in Proc. IEEE ISIT 201

    Achievable Regions for Interference Channels with Generalized and Intermittent Feedback

    Full text link
    In this paper, we first study a two-user interference channel with generalized feedback. We establish an inner bound on its capacity region. The coding scheme that we employ for the inner bound is based on an appropriate combination of Han-Kobayash rate splitting and compress-and-forward at the senders. Each sender compresses the channel output that is observes using a compression scheme that is \`a-la Lim et al. noisy network coding and Avestimeher et al. quantize-map-and-forward. Next, we study an injective deterministic model in which the senders obtain output feedback only intermittently. Specializing the coding scheme of the model with generalized feedback to this scenario, we obtain useful insights onto effective ways of combining noisy network coding with interference alignment techniques. We also apply our results to linear deterministic interference channels with intermittent feedback.Comment: To appear in Proc. of the 2014 IEEE International Symposium on Information Theory, 6 pages, 2 figure

    Achievable rates for relay networks using superposition coding

    Get PDF
    We investigate the superposition strategy and its usefulness in terms of achievable information theoretic rates. The achievable rate of the superposition of block Markov encoding (decode-forward) and side information encoding (compress-forward) for the three-node Gaussian relay channel is analyzed. It is generally believed that superposition can out perform decode-forward or compress-forward due to its generality. We prove that within the class of Gaussian distributions, this is not the case: the superposition scheme only achieves a rate that is equal to the maximum of the rates achieved by decode-forward or compress-forward individually. We use the insight gathered on superposition forward scheme and devise a new coding scheme. The superposition coding scheme for communication over a network, combines partial decode-forward with noisy network coding. This hybrid scheme is termed as superposition noisy network coding. The novel coding scheme is designed and analyzed for a single relay channel, single source multicast network and multiple source multicast network. The special cases of Gaussian single relay channel and two way relay channel are analyzed for superposition noisy network coding. The achievable rate of the proposed scheme is higher than the existing schemes of noisy network coding, compress-forward and binning

    Wyner-Ziv Type Versus Noisy Network Coding For a State-Dependent MAC

    Full text link
    We consider a two-user state-dependent multiaccess channel in which the states of the channel are known non-causally to one of the encoders and only strictly causally to the other encoder. Both encoders transmit a common message and, in addition, the encoder that knows the states non-causally transmits an individual message. We find explicit characterizations of the capacity region of this communication model in both discrete memoryless and memoryless Gaussian cases. The analysis also reveals optimal ways of exploiting the knowledge of the state only strictly causally at the encoder that sends only the common message when such a knowledge is beneficial. The encoders collaborate to convey to the decoder a lossy version of the state, in addition to transmitting the information messages through a generalized Gel'fand-Pinsker binning. Particularly important in this problem are the questions of 1) optimal ways of performing the state compression and 2) whether or not the compression indices should be decoded uniquely. We show that both compression \`a-la noisy network coding, i.e., with no binning, and compression using Wyner-Ziv binning are optimal. The scheme that uses Wyner-Ziv binning shares elements with Cover and El Gamal original compress-and-forward, but differs from it mainly in that backward decoding is employed instead of forward decoding and the compression indices are not decoded uniquely. Finally, by exploring the properties of our outer bound, we show that, although not required in general, the compression indices can in fact be decoded uniquely essentially without altering the capacity region, but at the expense of larger alphabets sizes for the auxiliary random variables.Comment: Submitted for publication to the 2012 IEEE International Symposium on Information Theory, 5 pages, 1 figur
    corecore