1,810 research outputs found

    A Bayesian Network View on Acoustic Model-Based Techniques for Robust Speech Recognition

    Full text link
    This article provides a unifying Bayesian network view on various approaches for acoustic model adaptation, missing feature, and uncertainty decoding that are well-known in the literature of robust automatic speech recognition. The representatives of these classes can often be deduced from a Bayesian network that extends the conventional hidden Markov models used in speech recognition. These extensions, in turn, can in many cases be motivated from an underlying observation model that relates clean and distorted feature vectors. By converting the observation models into a Bayesian network representation, we formulate the corresponding compensation rules leading to a unified view on known derivations as well as to new formulations for certain approaches. The generic Bayesian perspective provided in this contribution thus highlights structural differences and similarities between the analyzed approaches

    A Subband-Based SVM Front-End for Robust ASR

    Full text link
    This work proposes a novel support vector machine (SVM) based robust automatic speech recognition (ASR) front-end that operates on an ensemble of the subband components of high-dimensional acoustic waveforms. The key issues of selecting the appropriate SVM kernels for classification in frequency subbands and the combination of individual subband classifiers using ensemble methods are addressed. The proposed front-end is compared with state-of-the-art ASR front-ends in terms of robustness to additive noise and linear filtering. Experiments performed on the TIMIT phoneme classification task demonstrate the benefits of the proposed subband based SVM front-end: it outperforms the standard cepstral front-end in the presence of noise and linear filtering for signal-to-noise ratio (SNR) below 12-dB. A combination of the proposed front-end with a conventional front-end such as MFCC yields further improvements over the individual front ends across the full range of noise levels

    Evolutionary Speech Recognition

    Get PDF
    Automatic speech recognition systems are becoming ever more common and are increasingly deployed in more variable acoustic conditions, by very different speakers. So these systems, generally conceived in a laboratory, must be robust in order to provide optimal performance in real situations. This article explores the possibility of gaining robustness by designing speech recognition systems able to auto-modify in real time, in order to adapt to the changes of acoustic environment. As a starting point, the adaptive capacities of living organisms were considered in relation to their environment. Analogues of these mechanisms were then applied to automatic speech recognition systems. It appeared to be interesting to imagine a system adapting to the changing acoustic conditions in order to remain effective regardless of its conditions of use

    Likelihood-Maximizing-Based Multiband Spectral Subtraction for Robust Speech Recognition

    Get PDF
    Automatic speech recognition performance degrades significantly when speech is affected by environmental noise. Nowadays, the major challenge is to achieve good robustness in adverse noisy conditions so that automatic speech recognizers can be used in real situations. Spectral subtraction (SS) is a well-known and effective approach; it was originally designed for improving the quality of speech signal judged by human listeners. SS techniques usually improve the quality and intelligibility of speech signal while speech recognition systems need compensation techniques to reduce mismatch between noisy speech features and clean trained acoustic model. Nevertheless, correlation can be expected between speech quality improvement and the increase in recognition accuracy. This paper proposes a novel approach for solving this problem by considering SS and the speech recognizer not as two independent entities cascaded together, but rather as two interconnected components of a single system, sharing the common goal of improved speech recognition accuracy. This will incorporate important information of the statistical models of the recognition engine as a feedback for tuning SS parameters. By using this architecture, we overcome the drawbacks of previously proposed methods and achieve better recognition accuracy. Experimental evaluations show that the proposed method can achieve significant improvement of recognition rates across a wide range of signal to noise ratios

    On adaptive decision rules and decision parameter adaptation for automatic speech recognition

    Get PDF
    Recent advances in automatic speech recognition are accomplished by designing a plug-in maximum a posteriori decision rule such that the forms of the acoustic and language model distributions are specified and the parameters of the assumed distributions are estimated from a collection of speech and language training corpora. Maximum-likelihood point estimation is by far the most prevailing training method. However, due to the problems of unknown speech distributions, sparse training data, high spectral and temporal variabilities in speech, and possible mismatch between training and testing conditions, a dynamic training strategy is needed. To cope with the changing speakers and speaking conditions in real operational conditions for high-performance speech recognition, such paradigms incorporate a small amount of speaker and environment specific adaptation data into the training process. Bayesian adaptive learning is an optimal way to combine prior knowledge in an existing collection of general models with a new set of condition-specific adaptation data. In this paper, the mathematical framework for Bayesian adaptation of acoustic and language model parameters is first described. Maximum a posteriori point estimation is then developed for hidden Markov models and a number of useful parameters densities commonly used in automatic speech recognition and natural language processing.published_or_final_versio
    corecore