166 research outputs found

    Noise Characterization and Performance of MODIS Thermal Emissive Bands

    Get PDF
    The MODerate-resolution Imaging Spectroradiometer (MODIS) is a premier Earth-observing sensor of the early 21st century, flying onboard the Terra (T) and Aqua (A) spacecraft. Both instruments far exceeded their six-year design life and continue to operate satisfactorily for more than 15 and 13 years, respectively. The MODIS instrument is designed to make observations at nearly a 100% duty cycle covering the entire Earth in less than two days. The MODIS sensor characteristics include a spectral coverage from 0.41micrometers to 14.4 micrometers, of which those wavelengths ranging from 3.7 micrometers to 14.4 micrometers cover the thermal infrared region which is interspaced in 16 thermal emissive bands (TEBs). Each of the TEB contains ten detectors which record samples at a spatial resolution of 1 km. In order to ensure a high level of accuracy for the TEB-measured top-of-atmosphere radiances, an onboard blackbody (BB) is used as the calibration source. This paper reports the noise characterization and performance of the TEB on various counts. First, the stability of the onboard BB is evaluated to understand the effectiveness of the calibration source. Next, key noise metrics such as the noise equivalent temperature difference and the noise equivalent dn difference (NEdN) for the various TEBs are determined from multiple temperature sources. These sources include the nominally controlled BB temperature of 290 K for T-MODIS and 285 K for A-MODIS, as well as a BB warm up-cool down cycle that is performed over a temperature range from roughly 270 to 315 K. The space-view port that measures the background signal serves as a viable cold temperature source for measuring noise. In addition, a well characterized Earth-view target, the Dome Concordia site located in the Antarctic plateau, is used for characterizing the stability of the sensor, indirectly providing a measure of the NEdN. Based on this rigorous characterization, a list of the noisy and inoperable detectors for the TEB for both instruments is reported to provide the science user communities quality control of the MODIS Level 1B calibrated product

    Multiyear On-orbit Calibration and Performance of Terra MODIS Thermal Emissive Bands

    Get PDF
    Since launch in December 1999, Terra MODIS has been making continuous Earth observations for more than seven years. It has produced a broad range of land, ocean, and atmospheric science data products for improvements in studies of global climate and environmental change. Among its 36 spectral bands, there are 20 reflective solar bands (RSB) and 16 thermal emissive bands (TEB). MODIS thermal emissive bands cover the mid-wave infrared (MWIR) and long-wave infrared (LWIR) spectral regions with wavelengths from 3.7 to 14.4pm. They are calibrated on-orbit using an on-board blackbody (BB) with its temperature measured by a set of thermistors on a scan-by-scan basis. This paper will provide a brief overview of MODIS TEB calibration and characterization methodologies and illustrate on-board BB functions and TEB performance over more than seven years of on-orbit operation and calibration. Discussions will be focused on TEB detector short-term stability and noise characterization, and changes in long-term response (or system gain). Results show that Terra MODIS BB operation has been extremely stable since launch. When operated at its nominal controlled temperature of 290K, the BB temperature variation is typically less than +0.30mK on a scan-by-scan basis and there has been no time-dependent temperature drift. In addition to excellent short-term stability, most TEB detectors continue to meet or exceed their specified noise characterization requirements, thus enabling calibration accuracy and science data product quality to be maintained. Excluding the noisy detectors identified pre-launch and those that occurred post-launch, the changes in TEB responses have been less than 0.7% on an annual basis. The optical leak corrections applied to bands 32-36 have been effective and stable over the entire missio

    Terra and Aqua MODIS TEB Inter-Comparison Using Himawari-8/AHI as Reference

    Get PDF
    Intercomparison between the two MODIS instruments is very useful for both the instrument calibration and its uncertainty assessment. Terra and Aqua MODIS have almost identical relative spectral response, spatial resolution, and dynamic range for each band, so the site-dependent effect from spectral mismatch for their comparison is negligible. Major challenges in cross-sensor comparison of instruments on different satellites include differences in observation time and view angle over selected pseudoinvariant sites. The simultaneous nadir overpasses (SNO) between the two satellites are mostly applied for comparison and the scene under SNO varies. However, there is a dearth of SNO between the Terra and Aqua. This work focuses on an intercomparison method for MODIS thermal emissive bands using Himawari-8 Advanced Himawari Imager (AHI) as a reference. Eleven thermal emissive bands on MODIS are at least to some degree spectrally matched to the AHI bands. The sites selected for the comparison are an ocean area around the Himawari-8 suborbital point and the Strzelecki Desert located south of the Himawari-8 suborbital point. The time difference between the measurements from AHI and MODIS is <5 min. The comparison is performed using 2017 collection 6.1 L1B data for MODIS. The MODISAHI difference is corrected to remove the view angle dependence. The TerraAqua MODIS difference for the selected TEB is up to 0.6 K with the exception of band 30. Band 30 has the largest difference, which is site dependent, most likely due to a crosstalk effect. Over the ocean, the band 30 difference between the two MODIS instruments is around 1.75 K, while over the desert; the difference is around 0.68 K. The MODIS precision is also compared from the Gaussian regression of the double difference. Terra bands 27 to 30 have significant extra noise due to crosstalk effects on these bands. These TerraAqua comparison results are used for MODIS calibration assessments and are beneficial for future calibration algorithm improvement. The impact of daytime measurements and the scene dependence are also discussed

    MODIS On-Board Blackbody Function and Performance

    Get PDF
    Two MODIS instruments are currently in orbit, making continuous global observations in visible to long-wave infrared wavelengths. Compared to heritage sensors, MODIS was built with an advanced set of on-board calibrators, providing sensor radiometric, spectral, and spatial calibration and characterization during on-orbit operation. For the thermal emissive bands (TEB) with wavelengths from 3.7 m to 14.4 m, a v-grooved blackbody (BB) is used as the primary calibration source. The BB temperature is accurately measured each scan (1.47s) using a set of 12 temperature sensors traceable to NIST temperature standards. The onboard BB is nominally operated at a fixed temperature, 290K for Terra MODIS and 285K for Aqua MODIS, to compute the TEB linear calibration coefficients. Periodically, its temperature is varied from 270K (instrument ambient) to 315K in order to evaluate and update the nonlinear calibration coefficients. This paper describes MODIS on-board BB functions with emphasis on on-orbit operation and performance. It examines the BB temperature uncertainties under different operational conditions and their impact on TEB calibration and data product quality. The temperature uniformity of the BB is also evaluated using TEB detector responses at different operating temperatures. On-orbit results demonstrate excellent short-term and long-term stability for both the Terra and Aqua MODIS on-board BB. The on-orbit BB temperature uncertainty is estimated to be 10mK for Terra MODIS at 290K and 5mK for Aqua MODIS at 285K, thus meeting the TEB design specifications. In addition, there has been no measurable BB temperature drift over the entire mission of both Terra and Aqua MODIS

    Using Lunar Observations to Assess Terra MODIS Thermal Emissive Bands Calibration

    Get PDF
    MODIS collects data in both the reflected solar and thermal emissive regions using 36 spectral bands. The center wavelengths of these bands cover the3.7 to 14.24 micron region. In addition to using its on-board calibrators (OBC), which include a full aperture solar diffuser (SD) and a blackbody (BB), lunar observations have been scheduled on a regular basis to support both Terra and Aqua MODIS on-orbit calibration and characterization. This paper provides an overview of MODIS lunar observations and their applications for the reflective solar bands (RSB) and thermal emissive bands (TEB) with an emphasis on potential calibration improvements of MODIS band 21 at 3.96 microns. This spectral band has detectors set with low gains to enable fire detection. Methodologies are proposed and examined on the use of lunar observations for the band 21 calibration. Also presented in this paper are preliminary results derived from Terra MODIS lunar observations and remaining challenging issues

    Status of Aqua MODIS On-orbit Calibration and Characterization

    Get PDF
    The MODIS Flight Model 1 (FM1) has been in operation for more than two years since its launch onboard the NASA's Earth Observing System (EOS) Aqua spacecraft on May 4, 2002. The MODIS has 36 spectral bands: 20 reflective solar bands (RSB) with center wavelengths from 0.41 to 2.2 micron and 16 thermal emissive bands (TEB) from 3.7 to 14.5 micron. It provides the science community observations (data products) of the Earth's land, oceans, and atmosphere for a board range of applications. Its primary on-orbit calibration and characterization activities are performed using a solar diffuser (SD) and a solar diffuser stability monitor (SDSM) system for the RSB and a blackbody for the TEB. Another on-board calibrator (OBC) known as the spectro-radiometric calibration assembly (SRCA) is used for the instrument's spatial (TEB and RSB) and spectral (RSB only) characterization. We present in this paper the status of Aqua MODIS calibration and characterization during its first two years of on-orbit operation. Discussions will be focused on the calibration activities executed on-orbit in order to maintain and enhance the instrument's performance and the quality of its Level 1B (L1B) data products. We also provide comparisons between Aqua MODIS and Terra MODIS (launched in December, 1999), including their similarity and difference in response trending and optics degradation. Existing data and results show that Aqua MODIS bands 8 (0.412 micron) and 9 (0.443 micron) have much smaller degradation than Terra MODIS bands 8 and 9. The most noticeable feature shown in the RSB trending is that the mirror side differences in Aqua MODIS are extremely small and stable (<0.1%) while the Terra MODIS RSB trending has shown significant mirror side difference and wavelength dependent degradation. The overall stability of the Aqua MODIS TEB is also better than that of the Terra MODIS during their first two years of on-orbit operation

    An Overview of NPP VIIRS Pre-Launch and On-Orbit Calibration and Characterization

    Get PDF
    NPP Visible Infrared Imaging Radiometer Suite (VIIRS) test program at the instrument and observatory level is complete and has provided an extensive amount of high quality data to enable the assessment of sensor performance

    MODIS and VIIRS On-Orbit Calibration and Characterization Using Observations from Spacecraft Pitch Maneuvers

    Get PDF
    Two MODIS instruments (Terra and Aqua) and two VIIRS instruments (S-NPP and JPSS-1) are currently operated inspace, continuously making global earth observations in the spectral range from visible (VIS) to long-wave infrared(LWIR). These observations have enabled a broad range of environmental data records to be generated and distributed insupport of both operational and scientific community. Despite extensive pre-launch calibration and characterizationperformed for both MODIS and VIIRS instruments and routine on-orbit calibration activities carried out using their onboardcalibrators (OBC), various spacecraft maneuvers have also been designed and implemented to further enhance thesensor on-orbit calibration and data quality. This paper focuses on the use of observations made during spacecraft pitchmaneuvers of MODIS and VIIRS in support of their on-orbit characterization of thermal emissive bands (TEB) responseversus scan-angle (RVS). In the case of Terra MODIS, lunar observations made from instrument nadir view duringspacecraft pitch maneuvers are used to compare with that made regularly through instrument space view (SV) port toevaluate on-orbit changes in RVS and band-to-band registration (BBR) for the reflective solar bands (RSB). In additionto results derived from spacecraft pitch maneuvers performed for MODIS and VIIRS, discussion is provided on theadvantages, challenges, and lessons for future considerations and improvements

    Assessment of Terra MODIS Thermal Emissive Band Calibration Using Cold Targets and Measurements in Lunar Roll Events

    Get PDF
    Terra MODIS has provided continuous global observations for science research and applications for more than 18 years. The MODIS Thermal emissive bands (TEB) radiometric calibration uses a quadratic function for instrument response. The calibration coefficients are updated using the response of an on-board blackbody (BB) in quarterly warm-up and cool-down (WUCD) events. As instrument degradation and electronic crosstalk of long-wave infrared (LWIR) bands 27 to 30 developed substantial issues, accurate calibration is crucial for a high-quality L1B product. The on-board BB WUCD temperature ranges from 270 K to 315 K and the derived nonlinear response has a relatively large uncertainty for the offset, especially for these LWIR bands, which affects the measurements of low brightness temperature (BT) scenes. In this study, the TEB radiometric calibration impact on the L1B product is assessed using selected cold targets and the measurements during regular lunar rolls. The cold targets include Antarctic Dome Concordia (Dome-C) and deep convective clouds (DCC) for the calibration assessment, focusing on bands 27 to 30. Dome-C area is covered with uniformly-distributed permanent snow, and the atmospheric effect is small and relatively constant. Usually the DCC is treated as an invariant earth target to evaluate the reflective solar band calibration. The DCC can also be treated as a stable target to assess the performance of TEB calibration. During a scheduled lunar observation event with a spacecraft roll maneuver to view the moon through the space view port, the instrument cavity provides a stable reference for calibration assessment. The long-term trending of BT measurements and the relative difference between scan mirror sides and detectors are used for the assessment of the calibration consistency and stability. The comparison of L1B products over the selected targets before and after the calibration coefficients update can be used to assess the impact of a calibration look-up table (LUT) update. This assessment is beneficial for future calibration algorithm and LUT update procedure improvements for enhancing the L1B product quality
    • …
    corecore