29 research outputs found

    On the complexity of computing Gr\"obner bases for weighted homogeneous systems

    Get PDF
    Solving polynomial systems arising from applications is frequently made easier by the structure of the systems. Weighted homogeneity (or quasi-homogeneity) is one example of such a structure: given a system of weights W=(w_1,
,w_n)W=(w\_{1},\dots,w\_{n}), WW-homogeneous polynomials are polynomials which are homogeneous w.r.t the weighted degree deg⁥_W(X_1α_1,
,X_nα_n)=∑w_iα_i\deg\_{W}(X\_{1}^{\alpha\_{1}},\dots,X\_{n}^{\alpha\_{n}}) = \sum w\_{i}\alpha\_{i}. Gr\"obner bases for weighted homogeneous systems can be computed by adapting existing algorithms for homogeneous systems to the weighted homogeneous case. We show that in this case, the complexity estimate for Algorithm~\F5 \left(\binom{n+\dmax-1}{\dmax}^{\omega}\right) can be divided by a factor (∏w_i)ω\left(\prod w\_{i} \right)^{\omega}. For zero-dimensional systems, the complexity of Algorithm~\FGLM nDωnD^{\omega} (where DD is the number of solutions of the system) can be divided by the same factor (∏w_i)ω\left(\prod w\_{i} \right)^{\omega}. Under genericity assumptions, for zero-dimensional weighted homogeneous systems of WW-degree (d_1,
,d_n)(d\_{1},\dots,d\_{n}), these complexity estimates are polynomial in the weighted B\'ezout bound ∏_i=1nd_i/∏_i=1nw_i\prod\_{i=1}^{n}d\_{i} / \prod\_{i=1}^{n}w\_{i}. Furthermore, the maximum degree reached in a run of Algorithm \F5 is bounded by the weighted Macaulay bound ∑(d_i−w_i)+w_n\sum (d\_{i}-w\_{i}) + w\_{n}, and this bound is sharp if we can order the weights so that w_n=1w\_{n}=1. For overdetermined semi-regular systems, estimates from the homogeneous case can be adapted to the weighted case. We provide some experimental results based on systems arising from a cryptography problem and from polynomial inversion problems. They show that taking advantage of the weighted homogeneous structure yields substantial speed-ups, and allows us to solve systems which were otherwise out of reach

    On the Complexity of the F5 Gr\"obner basis Algorithm

    Get PDF
    We study the complexity of Gr\"obner bases computation, in particular in the generic situation where the variables are in simultaneous Noether position with respect to the system. We give a bound on the number of polynomials of degree dd in a Gr\"obner basis computed by Faug\`ere's F5F_5 algorithm~(Fau02) in this generic case for the grevlex ordering (which is also a bound on the number of polynomials for a reduced Gr\"obner basis, independently of the algorithm used). Next, we analyse more precisely the structure of the polynomials in the Gr\"obner bases with signatures that F5F_5 computes and use it to bound the complexity of the algorithm. Our estimates show that the version of~F5F_5 we analyse, which uses only standard Gaussian elimination techniques, outperforms row reduction of the Macaulay matrix with the best known algorithms for moderate degrees, and even for degrees up to the thousands if Strassen's multiplication is used. The degree being fixed, the factor of improvement grows exponentially with the number of variables.Comment: 24 page

    Deterministically Computing Reduction Numbers of Polynomial Ideals

    Full text link
    We discuss the problem of determining reduction number of a polynomial ideal I in n variables. We present two algorithms based on parametric computations. The first one determines the absolute reduction number of I and requires computation in a polynomial ring with (n-dim(I))dim(I) parameters and n-dim(I) variables. The second one computes via a Grobner system the set of all reduction numbers of the ideal I and thus in particular also its big reduction number. However,it requires computations in a ring with n.dim(I) parameters and n variables.Comment: This new version replaces the earlier version arXiv:1404.1721 and it has been accepted for publication in the proceedings of CASC 2014, Warsaw, Polna

    Polar Varieties and Efficient Real Equation Solving: The Hypersurface Case

    Full text link
    The objective of this paper is to show how the recently proposed method by Giusti, Heintz, Morais, Morgenstern, Pardo \cite{gihemorpar} can be applied to a case of real polynomial equation solving. Our main result concerns the problem of finding one representative point for each connected component of a real bounded smooth hypersurface. The algorithm in \cite{gihemorpar} yields a method for symbolically solving a zero-dimensional polynomial equation system in the affine (and toric) case. Its main feature is the use of adapted data structure: Arithmetical networks and straight-line programs. The algorithm solves any affine zero-dimensional equation system in non-uniform sequential time that is polynomial in the length of the input description and an adequately defined {\em affine degree} of the equation system. Replacing the affine degree of the equation system by a suitably defined {\em real degree} of certain polar varieties associated to the input equation, which describes the hypersurface under consideration, and using straight-line program codification of the input and intermediate results, we obtain a method for the problem introduced above that is polynomial in the input length and the real degree.Comment: Late

    A Direttissimo Algorithm for Equidimensional Decomposition

    Full text link
    We describe a recursive algorithm that decomposes an algebraic set into locally closed equidimensional sets, i.e. sets which each have irreducible components of the same dimension. At the core of this algorithm, we combine ideas from the theory of triangular sets, a.k.a. regular chains, with Gr\"obner bases to encode and work with locally closed algebraic sets. Equipped with this, our algorithm avoids projections of the algebraic sets that are decomposed and certain genericity assumptions frequently made when decomposing polynomial systems, such as assumptions about Noether position. This makes it produce fine decompositions on more structured systems where ensuring genericity assumptions often destroys the structure of the system at hand. Practical experiments demonstrate its efficiency compared to state-of-the-art implementations

    On the intrinsic complexity of the arithmetic Nullstellensatz

    Get PDF
    We show several arithmetic estimates for Hilbert's Nullstellensatz. This includes an algorithmic procedure computing the polynomials and constants occurring in a BĂ©zout identity, whose complexity is polynomial in the geometric degree of the system. Moreover, we show for the first time height estimates of intrinsic type for the polynomials and constants appearing, again polynomial in the geometric degree and linear in the height of the system. These results are based on a suitable representation of polynomials by straight-line programs and duality techniques using the Trace Formula for Gorenstein algebras. As an application we show more precise upper bounds for the function πS(x) counting the number of primes yielding an inconsistent modular polynomial equation system. We also give a computationally interesting lower bound for the density of small prime numbers of controlled bit length for the reduction to positive characteristic of inconsistent systems. Again, this bound is given in terms of intrinsic parameters.Facultad de Ciencias Exacta

    On the intrinsic complexity of the arithmetic Nullstellensatz

    Get PDF
    We show several arithmetic estimates for Hilbert's Nullstellensatz. This includes an algorithmic procedure computing the polynomials and constants occurring in a BĂ©zout identity, whose complexity is polynomial in the geometric degree of the system. Moreover, we show for the first time height estimates of intrinsic type for the polynomials and constants appearing, again polynomial in the geometric degree and linear in the height of the system. These results are based on a suitable representation of polynomials by straight-line programs and duality techniques using the Trace Formula for Gorenstein algebras. As an application we show more precise upper bounds for the function πS(x) counting the number of primes yielding an inconsistent modular polynomial equation system. We also give a computationally interesting lower bound for the density of small prime numbers of controlled bit length for the reduction to positive characteristic of inconsistent systems. Again, this bound is given in terms of intrinsic parameters.Facultad de Ciencias Exacta
    corecore