3,636 research outputs found

    Node Ranking in Wireless Sensor Networks with Linear Topology

    Get PDF
    International audienceIn wireless sensor networks with linear topology, knowing the physical order in which nodes are deployed is useful not only for the target application, but also to some network services, like routing or data aggregation. Considering the limited resources of sensor nodes, the design of autonomous protocols to find this order is a challenging topic. In this paper, we propose a distributed and iterative centroid-based algorithm to address this problem. At each iteration, the algorithm selects two virtual anchors and finds the order of a subset of nodes, placed between these two anchors. The proposed algorithm requires local node connectivity knowledge and the identifier of the first sensor node of the network, which is the only manually configured parameter. This solution, scalable and lightweight from the deployment and maintenance point of view, is shown to be robust to connectivity degradation, correctly ordering more than 95% of the nodes, even under very low connectivity condition

    Node Ranking in Wireless Sensor Networks with Linear Topology

    Get PDF
    International audienceIn wireless sensor networks with linear topology, knowing the physical order in which nodes are deployed is useful not only for the target application, but also to some network services, like routing or data aggregation. Considering the limited resources of sensor nodes, the design of autonomous protocols to find this order is a challenging topic. In this paper, we propose a distributed and iterative centroid-based algorithm to address this problem. At each iteration, the algorithm selects two virtual anchors and finds the order of a subset of nodes, placed between these two anchors. The proposed algorithm requires local node connectivity knowledge and the identifier of the first sensor node of the network, which is the only manually configured parameter. This solution, scalable and lightweight from the deployment and maintenance point of view, is shown to be robust to connectivity degradation, correctly ordering more than 95% of the nodes, even under very low connectivity condition

    Performance evaluation of WMN-GA for different mutation and crossover rates considering number of covered users parameter

    Get PDF
    Node placement problems have been long investigated in the optimization field due to numerous applications in location science and classification. Facility location problems are showing their usefulness to communication networks, and more especially from Wireless Mesh Networks (WMNs) field. Recently, such problems are showing their usefulness to communication networks, where facilities could be servers or routers offering connectivity services to clients. In this paper, we deal with the effect of mutation and crossover operators in GA for node placement problem. We evaluate the performance of the proposed system using different selection operators and different distributions of router nodes considering number of covered users parameter. The simulation results show that for Linear and Exponential ranking methods, the system has a good performance for all rates of crossover and mutation.Peer ReviewedPostprint (published version

    In-Network Outlier Detection in Wireless Sensor Networks

    Full text link
    To address the problem of unsupervised outlier detection in wireless sensor networks, we develop an approach that (1) is flexible with respect to the outlier definition, (2) computes the result in-network to reduce both bandwidth and energy usage,(3) only uses single hop communication thus permitting very simple node failure detection and message reliability assurance mechanisms (e.g., carrier-sense), and (4) seamlessly accommodates dynamic updates to data. We examine performance using simulation with real sensor data streams. Our results demonstrate that our approach is accurate and imposes a reasonable communication load and level of power consumption.Comment: Extended version of a paper appearing in the Int'l Conference on Distributed Computing Systems 200

    Latency Optimal Broadcasting in Noisy Wireless Mesh Networks

    Full text link
    In this paper, we adopt a new noisy wireless network model introduced very recently by Censor-Hillel et al. in [ACM PODC 2017, CHHZ17]. More specifically, for a given noise parameter p[0,1],p\in [0,1], any sender has a probability of pp of transmitting noise or any receiver of a single transmission in its neighborhood has a probability pp of receiving noise. In this paper, we first propose a new asymptotically latency-optimal approximation algorithm (under faultless model) that can complete single-message broadcasting task in D+O(log2n)D+O(\log^2 n) time units/rounds in any WMN of size n,n, and diameter DD. We then show this diameter-linear broadcasting algorithm remains robust under the noisy wireless network model and also improves the currently best known result in CHHZ17 by a Θ(loglogn)\Theta(\log\log n) factor. In this paper, we also further extend our robust single-message broadcasting algorithm to kk multi-message broadcasting scenario and show it can broadcast kk messages in O(D+klogn+log2n)O(D+k\log n+\log^2 n) time rounds. This new robust multi-message broadcasting scheme is not only asymptotically optimal but also answers affirmatively the problem left open in CHHZ17 on the existence of an algorithm that is robust to sender and receiver faults and can broadcast kk messages in O(D+klogn+polylog(n))O(D+k\log n + polylog(n)) time rounds.Comment: arXiv admin note: text overlap with arXiv:1705.07369 by other author

    QoS routing in ad-hoc networks using GA and multi-objective optimization

    Get PDF
    Much work has been done on routing in Ad-hoc networks, but the proposed routing solutions only deal with the best effort data traffic. Connections with Quality of Service (QoS) requirements, such as voice channels with delay and bandwidth constraints, are not supported. The QoS routing has been receiving increasingly intensive attention, but searching for the shortest path with many metrics is an NP-complete problem. For this reason, approximated solutions and heuristic algorithms should be developed for multi-path constraints QoS routing. Also, the routing methods should be adaptive, flexible, and intelligent. In this paper, we use Genetic Algorithms (GAs) and multi-objective optimization for QoS routing in Ad-hoc Networks. In order to reduce the search space of GA, we implemented a search space reduction algorithm, which reduces the search space for GAMAN (GA-based routing algorithm for Mobile Ad-hoc Networks) to find a new route. We evaluate the performance of GAMAN by computer simulations and show that GAMAN has better behaviour than GLBR (Genetic Load Balancing Routing).Peer ReviewedPostprint (published version

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    Self-stabilizing Numerical Iterative Computation

    Full text link
    Many challenging tasks in sensor networks, including sensor calibration, ranking of nodes, monitoring, event region detection, collaborative filtering, collaborative signal processing, {\em etc.}, can be formulated as a problem of solving a linear system of equations. Several recent works propose different distributed algorithms for solving these problems, usually by using linear iterative numerical methods. In this work, we extend the settings of the above approaches, by adding another dimension to the problem. Specifically, we are interested in {\em self-stabilizing} algorithms, that continuously run and converge to a solution from any initial state. This aspect of the problem is highly important due to the dynamic nature of the network and the frequent changes in the measured environment. In this paper, we link together algorithms from two different domains. On the one hand, we use the rich linear algebra literature of linear iterative methods for solving systems of linear equations, which are naturally distributed with rapid convergence properties. On the other hand, we are interested in self-stabilizing algorithms, where the input to the computation is constantly changing, and we would like the algorithms to converge from any initial state. We propose a simple novel method called \syncAlg as a self-stabilizing variant of the linear iterative methods. We prove that under mild conditions the self-stabilizing algorithm converges to a desired result. We further extend these results to handle the asynchronous case. As a case study, we discuss the sensor calibration problem and provide simulation results to support the applicability of our approach
    corecore