42,365 research outputs found

    GraphMaker: Can Diffusion Models Generate Large Attributed Graphs?

    Full text link
    Large-scale graphs with node attributes are fundamental in real-world scenarios, such as social and financial networks. The generation of synthetic graphs that emulate real-world ones is pivotal in graph machine learning, aiding network evolution understanding and data utility preservation when original data cannot be shared. Traditional models for graph generation suffer from limited model capacity. Recent developments in diffusion models have shown promise in merely graph structure generation or the generation of small molecular graphs with attributes. However, their applicability to large attributed graphs remains unaddressed due to challenges in capturing intricate patterns and scalability. This paper introduces GraphMaker, a novel diffusion model tailored for generating large attributed graphs. We study the diffusion models that either couple or decouple graph structure and node attribute generation to address their complex correlation. We also employ node-level conditioning and adopt a minibatch strategy for scalability. We further propose a new evaluation pipeline using models trained on generated synthetic graphs and tested on original graphs to evaluate the quality of synthetic data. Empirical evaluations on real-world datasets showcase GraphMaker's superiority in generating realistic and diverse large-attributed graphs beneficial for downstream tasks.Comment: Code available at https://github.com/Graph-COM/GraphMake

    The Advantage of Evidential Attributes in Social Networks

    Get PDF
    Nowadays, there are many approaches designed for the task of detecting communities in social networks. Among them, some methods only consider the topological graph structure, while others take use of both the graph structure and the node attributes. In real-world networks, there are many uncertain and noisy attributes in the graph. In this paper, we will present how we detect communities in graphs with uncertain attributes in the first step. The numerical, probabilistic as well as evidential attributes are generated according to the graph structure. In the second step, some noise will be added to the attributes. We perform experiments on graphs with different types of attributes and compare the detection results in terms of the Normalized Mutual Information (NMI) values. The experimental results show that the clustering with evidential attributes gives better results comparing to those with probabilistic and numerical attributes. This illustrates the advantages of evidential attributes.Comment: 20th International Conference on Information Fusion, Jul 2017, Xi'an, Chin

    Joint Video and Text Parsing for Understanding Events and Answering Queries

    Full text link
    We propose a framework for parsing video and text jointly for understanding events and answering user queries. Our framework produces a parse graph that represents the compositional structures of spatial information (objects and scenes), temporal information (actions and events) and causal information (causalities between events and fluents) in the video and text. The knowledge representation of our framework is based on a spatial-temporal-causal And-Or graph (S/T/C-AOG), which jointly models possible hierarchical compositions of objects, scenes and events as well as their interactions and mutual contexts, and specifies the prior probabilistic distribution of the parse graphs. We present a probabilistic generative model for joint parsing that captures the relations between the input video/text, their corresponding parse graphs and the joint parse graph. Based on the probabilistic model, we propose a joint parsing system consisting of three modules: video parsing, text parsing and joint inference. Video parsing and text parsing produce two parse graphs from the input video and text respectively. The joint inference module produces a joint parse graph by performing matching, deduction and revision on the video and text parse graphs. The proposed framework has the following objectives: Firstly, we aim at deep semantic parsing of video and text that goes beyond the traditional bag-of-words approaches; Secondly, we perform parsing and reasoning across the spatial, temporal and causal dimensions based on the joint S/T/C-AOG representation; Thirdly, we show that deep joint parsing facilitates subsequent applications such as generating narrative text descriptions and answering queries in the forms of who, what, when, where and why. We empirically evaluated our system based on comparison against ground-truth as well as accuracy of query answering and obtained satisfactory results

    Auto-Encoding Scene Graphs for Image Captioning

    Full text link
    We propose Scene Graph Auto-Encoder (SGAE) that incorporates the language inductive bias into the encoder-decoder image captioning framework for more human-like captions. Intuitively, we humans use the inductive bias to compose collocations and contextual inference in discourse. For example, when we see the relation `person on bike', it is natural to replace `on' with `ride' and infer `person riding bike on a road' even the `road' is not evident. Therefore, exploiting such bias as a language prior is expected to help the conventional encoder-decoder models less likely overfit to the dataset bias and focus on reasoning. Specifically, we use the scene graph --- a directed graph (G\mathcal{G}) where an object node is connected by adjective nodes and relationship nodes --- to represent the complex structural layout of both image (I\mathcal{I}) and sentence (S\mathcal{S}). In the textual domain, we use SGAE to learn a dictionary (D\mathcal{D}) that helps to reconstruct sentences in the S→G→D→S\mathcal{S}\rightarrow \mathcal{G} \rightarrow \mathcal{D} \rightarrow \mathcal{S} pipeline, where D\mathcal{D} encodes the desired language prior; in the vision-language domain, we use the shared D\mathcal{D} to guide the encoder-decoder in the I→G→D→S\mathcal{I}\rightarrow \mathcal{G}\rightarrow \mathcal{D} \rightarrow \mathcal{S} pipeline. Thanks to the scene graph representation and shared dictionary, the inductive bias is transferred across domains in principle. We validate the effectiveness of SGAE on the challenging MS-COCO image captioning benchmark, e.g., our SGAE-based single-model achieves a new state-of-the-art 127.8127.8 CIDEr-D on the Karpathy split, and a competitive 125.5125.5 CIDEr-D (c40) on the official server even compared to other ensemble models

    Graph-based discovery of ontology change patterns

    Get PDF
    Ontologies can support a variety of purposes, ranging from capturing conceptual knowledge to the organisation of digital content and information. However, information systems are always subject to change and ontology change management can pose challenges. We investigate ontology change representation and discovery of change patterns. Ontology changes are formalised as graph-based change logs. We use attributed graphs, which are typed over a generic graph with node and edge attribution.We analyse ontology change logs, represented as graphs, and identify frequent change sequences. Such sequences are applied as a reference in order to discover reusable, often domain-specific and usagedriven change patterns. We describe the pattern discovery algorithms and measure their performance using experimental result
    • 

    corecore