1,202 research outputs found

    Combined endophytic inoculants enhance nickel phytoextraction from serpentine soil in the hyperaccumulator Noccaea caerulescens

    Get PDF
    This study assesses the effects of specific bacterial endophytes on the phytoextraction capacity of the Ni-hyperaccumulator Noccaea caerulescens, spontaneously growing in a serpentine soil environment. Five metal-tolerant endophytes had already been selected for their high Ni tolerance (6 mM) and plant growth promoting ability. Here we demonstrate that individual bacterial inoculation is ineffective in enhancing Ni translocation and growth of N. caerulescens in serpentine soil, except for specific strains Ncr-1 and Ncr-8, belonging to the Arthrobacter and Microbacterium genera, which showed the highest indole acetic acid production and 1-aminocyclopropane-1-carboxylic acid-deaminase activity. Ncr-1 and Ncr-8 co-inoculation was even more efficient in promoting plant growth, soil Ni removal, and translocation of Ni, together with that of Fe, Co, and Cu. Bacteria of both strains densely colonized the root surfaces and intercellular spaces of leaf epidermal tissue. These two bacterial strains also turned out to stimulate root length, shoot biomass, and Ni uptake in Arabidopsis thaliana grown in MS agar medium supplemented with Ni. It is concluded that adaptation of N. caerulescens in highly Ni-contaminated serpentine soil can be enhanced by an integrated community of bacterial endophytes rather than by single strains; of the former, Arthrobacter and Microbacterium may be useful candidates for future phytoremediation trials in multiple metal-contaminated sites, with possible extension to non-hyperaccumulator plants

    Seasonal changes in antioxidative/oxidative profile of mining and non-mining populations of Syrian beancaper as determined by soil conditions

    Get PDF
    Soil pollution by heavy metals/metalloids (HMMs) is a problem worldwide. To prevent dispersion of contaminated particles by erosion, the maintenance of a vegetative cover is needed. Successful plant establishment in multi-polluted soils can be hampered not only by HMM toxicities, but also by soil nutrient deficiencies and the co-occurrence of abiotic stresses. Some plant species are able to thrive under these multi-stress scenarios often linked to marked fluctuations in environmental factors. This study aimed to investigate the metabolic adjustments involved in Zygophyllum fabago acclimative responses to conditions prevailing in HMM-enriched mine-tailings piles, during Mediterranean spring and summer. To this end, fully expanded leaves, and rhizosphere soil, of three contrasting mining and non-mining populations of Z. fabago grown spontaneously in south-eastern Spain were sampled in two consecutive years. Approximately 50 biochemical, physiological and edaphic parameters were examined, including leaf redox components, primary and secondary metabolites, endogenous levels of salicylic acid, and physicochemical properties of soil (fertility parameters and total concentration of HMMs). Multivariate data analysis showed a clear distinction in antioxidative/oxidative profiles between and within the populations studied. Levels of chlorophylls, proteins and proline characterized control plants whereas antioxidant capacity and C- and S-based antioxidant compounds were biomarkers of mining plants. Seasonal variations were characterized by higher levels of alkaloids and PAL and soluble peroxidase activities in summer, and by soluble sugars and hydroxycinnamic acids in spring irrespective of the population considered. Although the antioxidant systems are subjected to seasonal variations, the way and the intensity with which every population changes its antioxidative/oxidative profile seem to be determined by soil conditions. In short, Z. fabago displays a high physiological plasticity that allow it to successfully shift its metabolism to withstand the multiple stresses that plants must cope with in mine tailings piles under Mediterranean climatic conditions.This work was supported by the Ministerio de Ciencia e Innovación [grant number CTM2011-23958]; Ministerio de Ciencia y Tecnología [grant number CGL2006-11569]; and Fundación Séneca [grant number FB/23/FS/02]. AL-O holds a grant from the Ministerio de Educación Cultura y Deporte [grant number AP2012-2559]. Part of this work was carried out at the Instituto de Biotecnología Vegetal, UPCT

    Zinc Homeostasis and isotopic fractionation in plants: a review

    Get PDF
    Aims Recent advances in mass spectrometry have dem- onstrated that higher plants discriminate stable Zn iso- topes during uptake and translocation depending on environmental conditions and physiological status of the plant. Stable Zn isotopes have emerged as a prom- ising tool to characterize the plants response to inade- quate Zn supply. The aim of this review is to build a comprehensive model linking Zn homeostasis and Zn isotopic fractionation in plants and advance our current view of Zn homeostasis and interaction with other micronutrients. Methods The distribution of stable Zn isotopes in plants and the most likely causes of fractionation are reviewed, and the interactions with micronutrients Fe, Cu, and Ni are discussed. Results The main sources of Zn fractionation in plants are i) adsorption, ii) low- and high-affinity transport phenomena, iii) speciation, iv) compartmentalization, and v) diffusion. We propose a model for Zn fraction- ation during uptake and radial transport in the roots, root-to-shoot transport, and remobilization. Conclusions Future work should concentrate on better understanding the molecular mechanisms underlying the fractionations as this will be the key to future devel- opment of this novel isotope system. A combination of stable isotopes and speciation analyses might prove a powerful tool for plant nutrition and homeostasis studies

    Jahresbericht 2006 - 2007

    Get PDF

    The current status of the elemental defense hypothesis in relation to pathogens

    Get PDF
    This is the final version of the article. Available from Frontiers Media via the DOI in this record.Metal hyperaccumulating plants are able to accumulate exceptionally high concentrations of metals, such as zinc, nickel, or cadmium, in their aerial tissues. These metals reach concentrations that would be toxic to most other plant species. This trait has evolved multiple times independently in the plant kingdom. Recent studies have provided new insight into the ecological and evolutionary significance of this trait, by showing that some metal hyperaccumulating plants can use high concentrations of accumulated metals to defend themselves against attack by pathogenic microorganisms and herbivores. Here, we review the evidence that metal hyperaccumulation acts as a defensive trait in plants, with particular emphasis on plant-pathogen interactions. We discuss the mechanisms by which defense against pathogens might have driven the evolution of metal hyperaccumulation, including the interaction of this trait with other forms of defense. In particular, we consider how physiological adaptations and fitness costs associated with metal hyperaccumulation could have resulted in trade-offs between metal hyperaccumulation and other defenses. Drawing on current understanding of the population ecology of metal hyperaccumulator plants, we consider the conditions that might have been necessary for metal hyperaccumulation to be selected as a defensive trait, and discuss the likelihood that these were fulfilled. Based on these conditions, we propose a possible scenario for the evolution of metal hyperaccumulation, in which selective pressure for resistance to pathogens or herbivores, combined with gene flow from non-metallicolous populations, increases the likelihood that the metal hyperaccumulating trait becomes established in plant populations.This work was supported by an award to Gail M. Preston from the John Fell Fund, University of Oxford, by funding from the Natural Environment Research Council (grant number NER/S/A/2006/14187), and by a Marie Curie Intra-European Fellowship awarded to Anja C. Hörger

    Spatial imaging of Zn and other elements in Huanglongbing-affected grapefruit by synchrotron-based micro X-ray fluorescence investigation

    Get PDF
    Huanglongbing (HLB) is a highly destructive, fast-spreading disease of citrus, causing substantial economic losses to the citrus industry worldwide. Nutrient levels and their cellular distribution patterns in stems and leaves of grapefruit were analysed after graft-inoculation with lemon scions containing 'Candidatus Liberibacter asiaticus' (Las), the heat-tolerant Asian type of the HLB bacterium. After 12 months, affected plants showed typical HLB symptoms and significantly reduced Zn concentrations in leaves. Micro-XRF imaging of Zn and other nutrients showed that preferential localization of Zn to phloem tissues was observed in the stems and leaves collected from healthy grapefruit plants, but was absent from HLB-affected samples. Quantitative analysis by using standard references revealed that Zn concentration in the phloem of veins in healthy leaves was more than 10 times higher than that in HLB-affected leaves. No significant variation was observed in the distribution patterns of other elements such as Ca in stems and leaves of grapefruit plants with or without graft-inoculation of infected lemon scions. These results suggest that reduced phloem transport of Zn is an important factor contributing to HLB-induced Zn deficiency in grapefruit. Our report provides the first in situ, cellular level visualization of elemental variations within the tissues of HLB-affected citrus. © 2014 © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology

    Zur Morphologie, Systematik und Verbreitung des Polyploid komplexes Thlaspi perfoliatum L. [Microthlaspi perfoliatum (L.) F. K. Meyer] in Deutschland

    Get PDF
    Die Verbreitung unterschiedlicher Cytotypen innerhalb des Thlaspi perfoliatum Polyploidkomplexes in Deutschland wurde untersucht. Morphologische Beschreibungen der Frucht ermöglichen eine weitgehende Trennungder diploiden von den polyploiden Cytotypen. Die systematische Stellung der Sippen innerhalb der Gattung Microthlaspi F.K. Meyer und der Sammelgattung Thlaspi s. I. wird diskutiert, und die Entstehungs- und Verbreitungsgeschichte des Polyploidkomplexes wird erläutert.The distribution of different cytotypes within the Thlaspi perfoliatum polyploid complex has been investigated in Germany. Morphological descriptions of fruit characters enable the recognition and separation of diploids and polyploids. The systematic position of the cytotypes in respect to genus Microthlaspi F.K. Meyer and genus Thlaspi in a broad sense is discussed. Origin and life history of the polyploid complex is outlined
    corecore