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Abstract 18 

Aims: Recent advances in mass spectrometry have demonstrated that higher plants 19 

discriminate stable Zn isotopes during uptake and translocation depending on environmental 20 

conditions and physiological status of the plant. Stable Zn isotopes have emerged as a 21 

promising tool to characterize the plants response to inadequate Zn supply. The aim of this 22 

review is to build a comprehensive model linking Zn homeostasis and Zn isotopic fractionation 23 

in plants and advance our current view of Zn homeostasis and interaction with other 24 

micronutrients. Methods: The distribution of stable Zn isotopes in plants and the most likely 25 

causes of fractionation are reviewed, and the interactions with micronutrients Fe, Cu, and Ni 26 

are discussed. Results: The main sources of Zn fractionation in plants are i) adsorption, ii) 27 

low- and high-affinity transport phenomena, iii) speciation, iv) compartmentalization, and v) 28 

diffusion. We propose a model for Zn fractionation during uptake and radial transport in the 29 

roots, root-to-shoot transport, and remobilization. Conclusions: Future work should 30 

concentrate on better understanding the molecular mechanisms underlying the fractionations 31 

as this will be the key to future development of this novel isotope system. A combination of 32 

stable isotopes and speciation analyses might prove a powerful tool for plant nutrition and 33 

homeostasis studies. 34 

 35 

Abbreviations 36 

COPT = Copper Transporter 37 
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DMA = Deoxymugineic acid  38 

EXAFS = Extended X-Ray Absorption Fine Structure 39 

FRO = Ferric Reductase Oxidase 40 

HMA = Heavy Metal ATPase 41 

IRT = Iron-Regulated Transporter 42 

MC-ICP-MS = Multi-Collector Induced Coupled Plasma Mass Spectrometry 43 

MTP = Metal Tolerance Protein 44 

PS = Phytosiderophores 45 

YS = Yellow Stripe 46 

YSL = Yellow Stripe-Like 47 

ZIF = Zinc-Induced Facilitators 48 

ZIP = ZRT-IRT-like Protein 49 

 50 

Introduction 51 

Zinc is an essential micronutrient for living organisms with several crucial functions in the cell. 52 

It is the only metal present in enzymes of all six major classes, playing catalytic, regulatory, and 53 

structural roles (Vallee and Auld 1992; Coleman 1992). Zinc is furthermore involved in the 54 

regulation of DNA transcription, and the transduction of intra- and intercellular signalling 55 

(Broadley et al. 2007; Maret 2013). Unfortunately, Zn deficiency is widespread in arable soils 56 

worldwide (Alloway 2009) due to various factors such as high pH (>7), low plant available Zn 57 

content, prolonged flooding, low redox potential, and high contents of organic matter, 58 

bicarbonate and phosphorus (P) (Neue and Lantin 1994; Ova et al. 2015). It is not surprising 59 

that around 17% of the world population is at risk of insufficient Zn intake based on food 60 

supply data, although actual deficiency rates are likely to be much higher (Wessells and Brown 61 

2012; Kumssa et al. 2015). This makes Zn deficiency one of the most pressing causes of 62 

malnutrition. The consequences for the public health and the economy of the affected areas 63 
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are severe. In young children, Zn deficiency leads to stunting and increased susceptibility to 64 

diarrhoea, pneumonia, and malaria, causing 800,000 early deaths yearly (Caulfield et al. 2006). 65 

Zinc deficiency in crops causes root apex necrosis, leaf disorders, reduction of biomass, 66 

delayed maturity, yield reduction, and high mortality (Van Breemen and Castro 1980; Wissuwa 67 

et al. 2006; Broadley et al. 2007; Singh and Singh 2011; Al-Fahdawi et al. 2014; Mattiello et al. 68 

2015; Fu et al. 2015). Strategies like crop biofortification (increasing Zn content in edible parts 69 

during growth) or breeding for varieties tolerant to Zn-deficiency might help to overcome Zn 70 

deficiency in soils. To this end, it is crucial to increase our current level of understanding about 71 

the mechanisms involved in Zn uptake and metabolization by plants. The study of stable Zn 72 

isotope fractionation is a novel technique that is already helping us to understand better the 73 

mechanisms of Zn uptake, translocation, and tolerance in plants, and how these react to the 74 

environment. However, a comprehensive model linking Zn homeostasis and Zn isotopic 75 

fractionation in plants and considering the interactions with other micronutrients is still 76 

missing.  77 

Here we review our present understanding of Zn isotopic fractionation in plants and compare 78 

it with other micronutrients and their isotopic systems, with the aim of advancing our current 79 

view of Zn homeostasis and interaction with other micronutrients. 80 

 81 

Zinc isotopic fractionation in plants 82 

The concentration of Zn in plant tissues must stay within a specific range to preserve the 83 

structural cohesion and metabolic functions of the cells. The lower end is typically around 84 

15-20 µg Zn g-1 shoot dry matter, while the upper end is around 100-300 µg Zn g-1 (Marschner 85 

1995; Broadley et al. 2012). In the cytoplasm of the plant cells, the concentration of free Zn2+ is 86 

kept very low (in the pM range) (Maret 2015), because it tends to bind to cellular components. 87 

Higher concentrations could eventually disrupt the cytosolic metabolism and restrict Zn 88 

transport to satisfy the demands of sink organs, tissues, cells, and organelles. Plants have 89 
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developed several mechanisms to adapt to the fluctuations of the Zn available for them in the 90 

growth environment, and to maintain the intracellular levels of Zn stable within the optimal 91 

range. These are jointly known as Zn homeostasis. The amount of Zn taken up by the roots and 92 

transferred to the shoot is tightly controlled thanks to an intricate network of barriers, 93 

transporters, chelators, and compartments (Sinclair and Krämer 2012; Olsen and Palmgren 94 

2014; Ricachenevsky et al. 2015). Zinc movement through the plants consequently leads to 95 

isotope discrimination. 96 

Stable isotopes of light elements like C, N, O, and S have been long used to study plant 97 

physiology and its response to the environment (Mekhtiyeva and Pankina 1968; Deniro and 98 

Epstein 1979; Farquhar et al. 1982; Mariotti et al. 1982). A new generation of mass 99 

spectrometers (MC-ICP-MS) has enabled the use of stable isotopes to study Zn, copper (Cu), 100 

iron (Fe), nickel (Ni), calcium, and magnesium (Weiss et al. 2005; Wiegand 2005; Guelke and 101 

von Blanckenburg 2007; Black et al. 2008; Weinstein et al. 2011; Deng et al. 2014). Most 102 

progress has been made for Zn. Fractionation of Zn stable isotopes in plants was first reported 103 

during Zn uptake by the root and translocation to the shoots in hydroponically grown tomato 104 

(Solanum lycopersicum L.), lettuce (Lactuca sativa L.), and rice (Oryza sativa L.) (Weiss et al. 105 

2005). Roots accumulated heavy isotopes relative to the solution, while the lighter isotopes 106 

were enriched in the shoots compared to the roots and differences in root-to-shoot 107 

fractionation were observed among species (Weiss et al. 2005). In soils, a survey of six species 108 

collected from a pristine water-shed in Cameroon showed that both roots and shoots were 109 

isotopically heavier than the top soil, with only one species showing root-to-shoot 110 

fractionation (Megaphrynium macrostachyum) (Viers et al. 2007). In the same survey, the 111 

leaves of trees were isotopically lighter than the rest of the plant, and a relationship between 112 

the height of the leaves and the magnitude of the fractionation was suggested. This hypothesis 113 

was later supported by a study using bamboo (Phyllostachys aurea Rivière & C. Rivière), where 114 

the light isotopes were progressively enriched in leaves with height (Moynier et al. 2009). 115 
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Subsequent studies demonstrated that isotope discrimination by plants changes in response to 116 

Zn availability in the environment. In rice, response to Zn deficiency resulted in changes in the 117 

fractionation pattern, and the shoots of Zn-deficient plants accumulated more heavy isotopes 118 

than the controls (Arnold et al. 2010). In reeds (Phragmites australis [Cav.] Trin. ex Steud.), Zn 119 

excess also caused alteration of the isotopic fractionation, and the aerial parts of plants grown 120 

in Zn-polluted solution were isotopically light as compared with the controls (Caldelas et al. 121 

2011). Taken together, these findings show that Zn stable isotopes can be used to identify and 122 

quantify metal uptake or transport mechanisms and to assess the influence of factors such as 123 

environmental changes, physiological status, and species on these mechanisms. 124 

 125 

Determination of accurate and precise Zn stable isotope ratios in plants 126 

The MC-ICP-MS (multi-collector inductively coupled plasma – mass spectrometer) is a plasma 127 

source mass spectrometer with an array of collectors used to measure the isotope ratios of 128 

micronutrients. The instrument typically consists of three parts: an ion source, a mass analyser, 129 

and a detector. The ion source is a high-temperature argon plasma that ionizes the element. 130 

The mass analyser has two sectors (electrostatic and magnetic) that focus the ion beam and 131 

separate the ions for their mass-to-charge ratio. The detector unit consists of an array of 132 

Faraday cups that can measure different ion beams simultaneously. This multi-collector (MC) 133 

array permits to measure all the isotopes of an element at the same time and increases 134 

precision to 0.001% for the isotope ratios. An exhaustive description of the MC-ICP-MS 135 

technique is found in Vanhaecke et al. 2009.  136 

Mass spectrometers favour the transmission of the heavy isotopes inducing a mass-bias. The 137 

sample preparation can also cause mass fractionation. There are different strategies to correct 138 

for mass-bias shifts: direct sample-standard bracketing (SSB), doping with an external element, 139 

and using a double-spike. In the direct SSB method, a standard is analysed before and after the 140 

sample and used to correct the shift. The mass-bias must be constant over time and the 141 
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sample must be very pure to minimize matrix effects. If mass fractionation changes over time, 142 

a doping element with a mass similar to that of Zn (Cu is commonly used) may be mixed with 143 

the sample to correct for mass bias. This external correction is based on the assumption that 144 

the ratio of the mass fractionation of both elements stays constant during the analysis period 145 

(Maréchal et al. 1999). In the double-spike correction, a spike containing two Zn isotopes is 146 

added to the sample prior to sample preparation. The isotope ratio of the mixture is then 147 

compared with that of the double-spike. The application of these various correction methods 148 

to Zn stable isotope analysis has been described elsewhere(Albarède and Beard 2004). 149 

Zinc isotope fractionation is commonly expressed using the delta notation, where the isotopic 150 

ratio of the sample (e.g., 66Zn/64Zn) is compared with that of a standard (e.g. the widely used 151 

JMC 3-0729L Zn) and expressed in parts per thousand (‰) using Eqn. 1:  152 

[1] 153 

훿 푍푛 =

⎣
⎢
⎢
⎢
⎡ 푍푛

푍푛
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푍푛

− 1

⎦
⎥
⎥
⎥
⎤

· 10  154 

The Zn isotopic fractionation between two samples (i and j) is calculated using Eqn. 2: 155 

[2] 156 

훥 푍푛 = 훿 푍푛 − 훿 푍푛  157 

 158 

The IRMM 3702 standard has been proposed as the new first-choice reference material to 159 

substitute the Johnson-Matthey Zn standard 3-0749L (JMC) (Moeller et al. 2012), of which 160 

there is little left. However, JMC is still the standard most widely used in the literature and 161 

most of authors did not analyse IRMM 3702. For this reason, all the δ66Zn values in this review 162 

are expressed relative to the JMC standard. Equation 3 was used to convert between 163 

standards (Criss 1999): 164 

[3] 165 
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훿푋 = 훿푋 + 훿푆푡 +
1

10
(훿푋 ) ∙ (훿푆푡 ) 166 

 167 

, where δXJMC is the δ66Zn of the sample “X” relative to the standard JMC, δ66Xst is the δ66Zn of 168 

the same sample relative to the standard “St”, and δStJMC is the δ66Zn of the same standard 169 

relative to JMC. The data from each individual publication, was converted using the δStJMC 170 

provided by the authors. This was of 0.044±0.035‰ to 0.09±0.05‰ for the in-house standard 171 

Johnson-Matthey PurontronicTM Batch NH 27040 (Weiss et al. 2005; Arnold et al. 2010; Jouvin 172 

et al. 2012), 0.04±0.02‰ for the in-house standard London Zn (Smolders et al. 2013), and 173 

0.27±0.08‰ to 0.28±0.05‰ for the reference material IRMM 3702 (Tang et al. 2012; Tang et 174 

al. 2016).  175 

For Fe, Cu, and Ni the same δ notation is used, and δ values refer to the isotopic ratios 176 

56Fe/54Fe, 65Cu/63Cu, and 60Ni/58Ni, respectively, and are expressed relative to the standards 177 

IRMM-14 (Fe), NIST-SRM 976 (Cu), and NIST-SRM 986 (Ni). 178 

 179 

Isotopic fractionation of Zn during uptake by plants 180 

Zinc binding to the cell wall 181 

The first evidence of Zn fractionation during Zn uptake by plants was provided by Weiss and 182 

colleagues (Weiss et al. 2005). They used rice, lettuce, and tomato grown hydroponically in 183 

EDTA- (1 µM Zn) or HEDTA- (2 µM Zn) solutions, and observed that 66Zn was similarly enriched 184 

in the roots of all three species regardless of the nutrient solution (Δ66Znroot-solution=0.08 to 185 

0.16‰)(Fig. 1). This distribution of Zn isotopes was attributed to 66Zn preferential adsorption 186 

onto the root surface or binding to cell walls, together with the preferential uptake of 187 

isotopically light Zn2+ into the root cells. Subsequently, in durum wheat (Triticum durum Desf.) 188 

and tomato, very similar Δ66Znroot-solution were obtained (-0.02 to 0.15‰) in EDTA solution with 189 

1.6 or 0.62 µM Zn (Jouvin et al. 2012). These results from hydroponic studies agree with data 190 

obtained from the natural environment. Viers et al. 2007 surveyed six plant species including 191 
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herbaceous and trees growing in a tropical watershed in Cameroon. All roots were isotopically 192 

heavier than the soils (ranging between 0.09 and 0.64‰) (Fig. 2). In larch trees (Larix gmelinii 193 

[Rupr.] Rupr.) from pristine Siberian forests, the fractionation between roots and soil was of 194 

0.26‰ (Viers et al. 2015). Several other authors have reported the accumulation of heavy 195 

isotopes in the roots (up to 0.8%) with respect to the source of Zn in a variety of species and 196 

experimental set-ups (Aucour et al. 2011; Caldelas et al. 2011; Tang et al. 2012; Smolders et al. 197 

2013; Houben et al. 2014; Couder et al. 2015; Aucour et al. 2015; Tang et al. 2016). Since these 198 

studies submitted plants to conditions of either Zn deficiency or Zn excess, they will be 199 

discussed in detail in sections 4.3 and 6. 200 

Strong evidence of isotopic fractionation during Zn adsorption to cell walls has been obtained 201 

from laboratory experiments conducted with diatoms. Four species of marine and freshwater 202 

diatoms showed accumulation of 66Zn in the unwashed cells with respect to the solution, with 203 

Δ66Zndiatom-solution ranging between 0.08 and 0.43‰ (Gélabert et al. 2006). The offset was 204 

attributed to adsorption of Zn onto the cell surface, and Zn adsorption modelling showed that 205 

Zn would mostly bind to the carboxylate groups of the cell walls. In the same line, the 206 

unwashed cells of the marine diatom Thalassosiera oceanica (Hasle) were isotopically heavier 207 

(δ66Zn = -0.05 to 0.38‰) than EDTA-washed cells (-0.79 to -0.16‰) (John et al. 2007). The 208 

fraction of Zn adsorbed to T. oceanica was isotopically heavier than the solution, and the 209 

fractionation increased linearly with Zn concentration [Zn] (Δ66Zndiatom-solution from 0.09‰ at 210 

10-11.5 M to 0.52‰ at 10-8.5 M)(John et al. 2007). The Δ66Zndiatom-solution from both studies is 211 

remarkably similar, and points to the preferential adsorption of heavy Zn isotopes onto the cell 212 

surface, probably to the carboxylate groups of the cell walls. Zinc binding to carboxyl and 213 

hydroxyl groups of pectin and to hydroxyl groups of cellulose in the cell walls of roots has been 214 

confirmed in tobacco plants (Nicotiana tabacum L.) using chemical extracts and Extended 215 

X-Ray Absorption Fine Structure (EXAFS) spectrometry (Straczek et al. 2008). It is thus very 216 

likely that the enrichment in heavy Zn isotopes observed in plants roots is mostly generated 217 
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during Zn binding to the hydroxyl and carboxyl groups of the cell walls, similarly to what 218 

happens in diatoms. The isotopic fractionation between plants roots and the solution where 219 

they grow (Δ66Znroot-solution = -0.15‰ to 0.8‰) is in a similar range to that of diatoms relative to 220 

the solution (Δ66Zndiatom-solution = 0.08‰ to 0.52‰). The wider spread of Δ66Znroot-solution could be 221 

explained by the larger [Zn] in the solutions (up to 10-5 M), and species-specific differences in 222 

the composition and adsorption capacity of the cell walls. To test this hypothesis, we need to 223 

constrain the isotopic fractionation during Zn binding to the cell walls of plants and their 224 

majoritarian components cellulose and pectine. 225 

 226 

Low- and high-affinity transport phenomena 227 

The shoots of hydroponically grown rice, tomato, and lettuce were depleted in 66Zn relative to 228 

64Zn ranging from -0.25 to -0.56‰ and differing between species (Weiss et al. 2005)(Fig. 1). 229 

Analogous results were later obtained in tomato and durum wheat with Δ66Znshoot-root ranging 230 

between -0.29 and -0.56‰ (Jouvin et al. 2012; Smolders et al. 2013). This shift was attributed 231 

to the preferential transport of free Zn2+ across cell membranes by transport proteins. The cell 232 

walls of root cells closely touch one another forming a single extracellular space termed root 233 

apoplast, in which water and solutes can circulate freely. This movement is restricted by the 234 

endodermis, a single layer of cells that surrounds the conductive tissue of the root. The 235 

Casparian strip, a ring of impermeable material found in the cell walls of the endodermis 236 

prevents Zn from reaching the shoots via the apoplastic pathway. Hence, Zn has to be 237 

transported across the cell membrane of the root cells. The cell membrane consists of a 238 

phospholipid bilayer, and its hydrophobic nature impedes the passive diffusion of dissolved 239 

ions into the cell. Ion uptake must be facilitated by transporter proteins, which allow plant 240 

cells to control their concentration in the cytoplasm. Zinc transport across the cell membranes 241 

is tightly controlled by plasma membrane associated proteins, mainly those from the ZIP family 242 

(ZRT-IRT-like Proteins). Transporters AtIRT1 and AtIRT3 (Iron Regulated Transporter) in 243 
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arabidopsis (Arabidopsis thaliana [L.] Heynh.), HvZIP7 in barley (Hordeum vulgare L.), and 244 

OsIRT1, OsZIP1, OsZIP3, and OsZIP5 in rice are expressed in the root epidermis and involved in 245 

Zn uptake from the rhizosphere into the cell (Korshunova et al. 1999; Vert et al. 2002; Ishimaru 246 

et al. 2006; Lin et al. 2009; Lee et al. 2010; Tiong et al. 2014). 247 

There are no isotope data on isolated plant cells (protoplasts) to help us understand how the 248 

membrane transporter proteins could discriminate Zn isotopes. Experiments on diatoms 249 

(single cell algae) might be a good approximation, since the functioning of Zn transporters is 250 

similar. Early work in diatoms suggested that plasma membrane transporters discriminate 251 

between Zn isotopes (Gélabert et al. 2006; John et al. 2007). Cells of marine diatoms washed in 252 

EDTA to remove the extracellular Zn were isotopically light as compared with the solution, 253 

which was attributed to fractionation during Zn uptake. Moreover, the Δ66Znsolution-diatom 254 

increased with [Zn], following a sigmoidal curve (John et al. 2007). The switch of this curve 255 

took place around 10-10 M Zn, coinciding with the switch between suggested “high- and 256 

low-affinity” Zn uptake reported for marine diatoms (Sunda and Huntsman 1992). Transport 257 

characterized as “high-affinity” predominates at low [Zn], whereas low-affinity transport 258 

prevails at high [Zn]. In the algae study conducted by John and co-workers, high-affinity Zn 259 

uptake generated an isotopic fractionation of up to -0.2‰ at Zn levels below 10-10.5 M (John et 260 

al. 2007). In contrast, low-affinity transport caused a much greater fractionation (up to -0.8‰) 261 

at [Zn] above 10-9.5 M. It was argued that during higher efficiency transport most of the Zn 262 

within reach is transported regardless of the isotope. This would explain the smaller isotopic 263 

fractionation during Zn uptake when high-affinity transport predominates (John et al. 2007).  264 

High- and low-affinity transport phenomena have been described in rice, wheat, and other 265 

plants (Hacisalihoglu et al. 2001; Milner et al. 2012; Meng et al. 2014). The high-affinity 266 

transport was reported to predominate at less than 10-8 M Zn in the growth medium for wheat 267 

(Hacisalihoglu et al. 2001) and less than 10-7 M in rice (Meng et al. 2014). The [Zn] in the 268 

hydroponic studies was around 10-7-10-6 M (Weiss et al. 2005; Jouvin et al. 2012; Smolders et 269 
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al. 2013). At these Zn levels a higher contribution of low-affinity transport would be expected 270 

in wheat. In the above studies the root-to-shoot fractionation (Δ66Znshoot-root) was mainly 271 

attributed to Zn uptake into the plant by the root cells, so we can compare it to Δ66Znin-ex in 272 

diatoms. The Δ66Znshoot-root ranged from -0.25 to -0.56‰ for all plants, approximately between 273 

that of high- and low-affinity transport in marine diatoms (-0.2‰ and -0.8‰, respectively) 274 

(John et al. 2007). Moreover, wheat had lower Δ66Znshoot-root (-0.29‰ to -0.51‰) than rice 275 

(-0.25‰ to -0.29‰) (Weiss et al. 2005; Jouvin et al. 2012)(Fig. 1). It is noteworthy that the 276 

extent of the fractionation between shoots and roots increased with increasing [Zn], as 277 

Δ66Znin-ex did in diatoms (John et al. 2007). It is highly plausible that the ion selectivity of the 278 

membrane transport proteins like ZIP transporters is the predominant molecular mechanism 279 

responsible for the isotopic fractionation observed during Zn uptake at the root.  280 

 281 

The use of Δ66Znshoot-root as a proxy of isotopic fractionation during Zn uptake by plants serves 282 

well the purpose of elucidating the contribution of plants to isotope partitioning during Zn 283 

biogeochemical cycling. However, neither Δ66Znshoot-root nor Δ66Znshoot-solution separate the 284 

isotopic effect of Zn uptake from those caused by the mechanisms of Zn transfer from the root 285 

to the shoot (discussed in section 5.1). Therefore these parameters provide an insufficient 286 

level of detail for future physiological studies. To better quantify the discrimination of Zn 287 

isotopes occurring during Zn uptake into the root symplast we need to isolate this isotopic 288 

effect from any others. This could be achieved by reproducing the diatom studies using 289 

protoplasts, comparing the isotope ratios of wild type plants with mutant lines defective for 290 

known Zn transporters, measuring isotopic fractionation during Zn binding to relevant ligands, 291 

and analysing the isotope ratios of the cytoplasm, the vacuoles, and the xylem sap. 292 

 293 

Uptake of Zn complexes in Zn-deficient plants 294 
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Quantum mechanics predicts that the mass of atoms affects the strength of chemical bonds 295 

(White 2015). The molecule with the heavy isotope has lower vibrational frequency and hence 296 

lower dissociation energy. This generally leads to the accumulation of heavy isotopes in the 297 

complexed form, as seen during the formation of Zn complexes with EDTA (Δ66ZnZn-L– 298 

Zn
2+=0.33%) and deoxymugineic acid (DMA) (0.30‰)(Markovic et al. 2016). In a field study 299 

using soil with low Zn available, 66Zn was enriched in the shoots of a rice variety tolerant to Zn 300 

deficiency (RIL46) compared with the soil (Δ66Znshoot-soil=0.21‰) and the shoots of intolerant 301 

plants (Δ66Znint-tol=0.13‰)(Arnold et al. 2010)(Fig. 2). This was tentatively attributed to Zn 302 

uptake in form of complexes with DMA. The roots of RIL46 release more DMA in response to 303 

Zn deficiency than a Zn-deficiency sensitive rice variety, IR74 (1.2 vs 0.4 μmol DMA g-1 root DW 304 

4 h-1)(Widodo et al. 2010). Phytosiderophores (PS) like DMA are small molecular weight 305 

compounds excreted by the roots of plants from the Poaceae family (Strategy II plants) in 306 

response to Fe deficiency (Takagi 1976; Marschner et al. 1986; Takagi et al. 2008). The PS 307 

solubilize Fe from soil and form PS-Fe complexes, which are then taken up by the root cells by 308 

means of specific plasma membrane transporters of the OPT (Oligopeptide Transporter) family 309 

(Lubkowitz 2011). Examples are ZmYS1 in maize (Zea mays L.), HvYS1 in barley, and OsYSL15 in 310 

rice (Murata et al. 2006; Ueno et al. 2009; Inoue et al. 2009; Suzuki et al. 2012). To date no 311 

Zn-PS specific transport activity has been described, but ZmYS1 can transport DMA complexes 312 

with Zn, Cu, Mn, Ni, and Cd when expressed in yeast (Saccharomyces cerevisiae Meyen ex 313 

E.C.Hansen) and frog oocytes (Xenopus laevis) (Schaaf et al. 2004). Besides, the mutant maize 314 

ys1 (defective for ZmYS1, the Fe-PS transporter) cannot absorb Zn complexes with either DMA 315 

or eHMA (epi-hydroxymugineic acid) (Von Wiren et al. 1996). This suggests that Zn might share 316 

the same uptake pathway as Fe in Strategy II plants under Zn deficiency. In agreement, several 317 

surveys report a significant increase in PS secretion in Zn-deficient wheat (Triticum aestivum 318 

L.), barley, triticale (×Triticosecale Wittm. ex A.Camus), and rye (Secale cereale L.) (Zhang et al. 319 

1989; Cakmak et al. 1994; Gries et al. 1995; Cakmak et al. 1996; Erenoglu et al. 1996; Cakmak 320 
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et al. 1998a; Cakmak et al. 1998b; Rengel 1999; Erenoglu et al. 2000; Suzuki et al. 2006), which 321 

reverts to control levels within 72 hours after Zn is resupplied (Zhang et al. 1989). Moreover, 322 

many Zn-efficient varieties of wheat, barley, and rice have shown higher PS release rate during 323 

Zn-deficiency than the inefficient ones (Cakmak et al. 1994; Cakmak et al. 1996; Cakmak et al. 324 

1998a; Rengel et al. 1998; Rengel and Römheld 2000; Erenoglu et al. 2000; Tolay et al. 2001; 325 

Widodo et al. 2010; Neelam et al. 2010; Daneshbakhsh et al. 2013). In contrast, analogous 326 

experiments found no significant difference in PS release in Zn-deficient rice, wheat, and 327 

barley (Pedler et al. 2000; Suzuki et al. 2008; Widodo et al. 2010), or between Zn-efficient and 328 

inefficient wheat and barley (Erenoglu et al. 1996; Cakmak et al. 1998b; Pedler et al. 2000). 329 

These inconsistencies in the literature might indicate that Zn-efficiency in crops is determined 330 

by various factors, including PS release by the roots and possibly others. Interestingly, in some 331 

instances when Zn-efficiency and PS release did not correlate, Zn-efficient plants still took up 332 

more Zn and had higher root-to-shoot translocation rates (Von Wiren et al. 1996; Cakmak et al. 333 

1998b). It was suggested that Zn-efficient varieties might have higher rates of Zn-PS uptake 334 

and Zn export to the shoot, while the release rates were not necessarily increased. 335 

A central question is if the secretion rates observed during Zn deficiency and the Zn-PS 336 

complexes subsequently formed could account for the Zn budget of plants. The stability 337 

constant of Fe(III)-PS complexes (1018.4) is significantly higher than that of Zn-PS complexes 338 

(1012.9)(Murakami et al. 1989), which might make it difficult for the latter to form in presence 339 

of Fe(III). The amount of PS secreted during Fe-deficiency is much higher than during 340 

Zn-deficiency, up to 25 fold in rice (Suzuki et al. 2008), 23 fold in barley (Suzuki et al. 2006), 341 

and 16 fold in wheat (Tolay et al. 2001). In a recent study in wheat (cv Tamaro) grown in 342 

calcareous Fe-deficient soils, PS secretion from the roots ranged from 0.2 to 41 pmol DMA g−1 343 

root DW s−1, which is about 50 times less than solution-grown plants typically secrete (Oburger 344 

et al. 2014). It was argued that the PS release data from solution-grown plants in zero [Zn] or 345 

[Fe] might be grossly over-estimated, since these extreme conditions are not realistic in the 346 
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field. In soils, at least a small amount of those metals will be available for plants, reducing the 347 

need for PS release. The PS release in soil-grown wheat was strongly increased by soil 348 

characteristics like salinity and low trace element availability (Oburger et al. 2014). Salinity had 349 

been previously seen to increase PS release rates in solution-grown wheat (Daneshbakhsh et 350 

al. 2013). To the best of our knowledge, there are no data available of PS release in Zn-351 

deficient soils. This information is crucial to determine if the PS make a significant contribution 352 

to Zn uptake, and build an accurate model of Zn uptake by plants in Zn-deficient soils. 353 

Furthermore, since Fe and Zn might compete for the binding sites of PS and the uptake of the 354 

resulting complexes, the interaction between Fe and Zn needs to be better understood for the 355 

correct interpretation of Zn isotopic fractionation in Zn-deficient graminaceous plants. In the 356 

particular case of rice, the effect of flooding and anoxia on the soil chemistry and plant 357 

physiology needs to be considered, since this crop is usually grown in inundated fields. In 358 

waterlogged soils, Fe2+ in soil solution is high while Zn availability is reduced by precipitation 359 

(Becker and Asch 2005). Mathematical modelling has shown that the rate of DMA release 360 

observed in Zn-deficient rice (≈10 pmol DMA g-1 root FW s-1) can fully account for the Zn 361 

uptake observed in a Zn-deficient submerged soil (Ptashnyk et al. 2011). However, the PS 362 

release data used for the model were obtained from solution-grown rice in aerobic conditions 363 

with low Fe2+ (Suzuki et al. 2006; Widodo et al. 2010). Unfortunately, no PS release data have 364 

been obtained in conditions which simulate anaerobic soil high in Fe2+ and low Zn. Analysis of 365 

gene expression has revealed that Fe2+ toxicity can down-regulate the expression of genes 366 

involved in PS synthesis and Fe-PS uptake in rice roots after short exposure times (three days) 367 

(Quinet et al. 2012). However, it is a short-lived effect. The expression levels are equal to the 368 

control or even higher after longer exposure times (1 to 3 weeks) (Quinet et al. 2012; Müller et 369 

al. 2015). Moreover, the stability constant of Zn-PS (1012.9) is higher than that of Fe(II)-PS 370 

(1010.5) (Murakami et al. 1989). It is thus possible that PS have a role in Zn-uptake by Zn-371 

deficient rice in waterlogged soils rich in Fe2+. An interesting feature of plants tolerant to 372 
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submersion is that they can have their roots covered by an iron plaque. This is a coat of 373 

precipitated Fe(III) hydroxides formed thanks to the oxygen leaked from the roots. Up to 25 g 374 

of iron plaque per Kg of root DW might favour Zn uptake in rice, whereas a higher amount 375 

interferes with Zn uptake (Zhang et al. 1998). The effect of the Fe plaque is larger in plants 376 

previously grown in Fe-deficient solution, and the Fe-deficient plants had a higher [Zn] in 377 

shoots. It was concluded that the PS might promote Zn uptake in plants with iron plaque by 378 

mobilizing Zn adsorbed to it. 379 

Besides PS, plant roots exudate a mixture of organic acids and amino acids that enhance Zn 380 

dissolution from the soil by lowering the pH around the roots and binding to Zn (Rasouli-381 

Sadaghiani et al. 2011). This strategy is also present in plant families that do not synthesize PS, 382 

where Zn and other metals can be taken up in form of complexes (Degryse et al. 2007). 383 

Furthermore, root exudates solubilize Zn from Zn-containing minerals like smithsonite (ZnCO3) 384 

(Houben and Sonnet 2012). For example, tomato seedlings were grown in resin-buffered 385 

solution at two external [Zn] (10-6 or 1.5x10-8 M) and two pot sizes, to manipulate the 386 

concentration of root exudates (Smolders et al. 2013). The highest [Zn] in the solution after 387 

plant growth was recorded in the experimental conditions that most favoured the 388 

accumulation of root exudates in the solution (low Zn and small pot). This suggested that root 389 

exudates can also have an important role in mobilizing Zn in dicots. Besides, the shoots at 10-6 390 

M Zn were enriched in light isotopes (-0.52‰ to -0.56‰). By contrast, plants grown at 1.5x10-8 391 

M had a similar isotopic composition as the roots (Δ66Znshoot-root=-0.06‰ to -0.09‰)(Smolders 392 

et al. 2013). It was hypothesized that at high Zn supply uptake was dominated by the 393 

facilitated diffusion of free Zn2+, which favours 64Zn, whereas at low Zn supply most of the Zn 394 

was taken up as Zn complexes. The heavier isotopes accumulate in the complexes because 395 

they form stronger bonds. The resulting complexes do not undergo isotopic fractionation 396 

during transport because the relative difference of mass (isotope vs complex) is too small. Zinc 397 

is preferentially taken up by plants as free Zn+2 (Marschner and Marschner 1995). However, 398 
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the uptake of entire Zn complexes has been reported in barley, potato (Solanum tuberosum 399 

L.), Brassica juncea (L.) Czern., and Lupinus albus L. (Collins et al. 2002). Specific transporters 400 

like AtHMA2 or members of the YSL (Yellow Stripe-like) family might facilitate the uptake of Zn 401 

complexes with ligands in the root exudates, but direct evidence is still missing (Schaaf et al. 402 

2004; Eren and Argüello 2004). 403 

Plants adapted to low-phosphorus soils can emit large amounts of carboxylates in response to 404 

phosphorus (P) deficiency (Gerke 2015). These carboxylates can increase the availability of Zn 405 

and other metals from the rhizosphere (Duffner et al. 2012; Lambers et al. 2015). Zinc content 406 

in the leaves of Hakea prostrata R.Br. increased with the development of cluster roots, which 407 

was attributed to the high release of carboxylates typical of these type of roots (Shane and 408 

Lambers 2005). In the same study, Zn concentration in leaves decreased with increasing P 409 

availability. Similar antagonistic interaction between Zn and P has been repeatedly observed in 410 

the literature (Imran et al. 2016; Zhang et al. 2016). This suggests that P availability could 411 

affect the Zn isotopic composition of the plant by increasing the proportion of Zn taken up in 412 

form of Zn complexes with OA. This interesting possibility has not been explored so far, and 413 

would be useful for the study of Zn-P interaction. 414 

 415 

Isotope fractionation of Zn during transport to the aerial parts 416 

Zinc transfer from the root to the stem 417 

The Δ66Znshoot-root of Zn-sufficient hydroponically grown rice, tomato, and wheat is in the 418 

range -0.56 to -0.25‰ (Weiss et al. 2005; Jouvin et al. 2012; Smolders et al. 2013). This shift in 419 

favour of the light isotopes has been attributed to Zn uptake facilitated by transporters at the 420 

membrane of the root cells, as discussed in section 4.2. However, in soil-grown plants the stem 421 

was sometimes isotopically heavier than the roots (Δ66Znstem-root from -0.33 to 0.25‰) (Viers et 422 

al. 2007; Moynier et al. 2009; Viers et al. 2015). This could be explained by plants taking up a 423 

greater proportion of Zn-complexes due to a lower availability of Zn in the natural 424 
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environment. However, we must also pay attention to the different sampling methods used. In 425 

the hydroponic studies (Weiss et al. 2005; Jouvin et al. 2012; Smolders et al. 2013) all the aerial 426 

parts were sampled together, whereas in the field studies (Viers et al. 2007; Moynier et al. 427 

2009; Viers et al. 2015) stems and leaves were analyzed separately. The contribution of the 428 

leaves might then explain the shift between the solution-grown and the soil-grown plants. 429 

Besides, a number of processes take place during Zn transfer from the root symplast to the 430 

aerial parts that are likely to discriminate Zn isotopes. In the intra-cellular fluid (cytosol) the pH 431 

is close to neutral (7.2-7.5), and Zn2+ will be kept at a very low concentration (in the pM 432 

range)(Maret 2015) to avoid precipitation and misplaced binding. There are several low-weight 433 

molecules that have been proposed as important Zn ligands in the cytosol, such as 434 

nicotinamine (NA), histidine, organic acids, and small peptides (for a review, see Sinclair and 435 

Krämer 2012). Of these, the non proteinogenic amino acid NA is considered the main Zn ligand 436 

in the cytosol, and a key factor in enhancing Zn mobility in the symplast (Clemens et al. 2013). 437 

The fractionation of Zn isotopes during the formation of Zn complexes with NA has not been 438 

explored. However, ab initio calculations have shown that the partitioning of heavy isotopes 439 

between citrates, malates, phosphates, histidine, and other Zn species can account for part of 440 

the isotopic fractionation observed in plants, which will be further discussed in section 6.2 441 

(Fujii and Albarède 2012; Fujii et al. 2014). The computational studies suggested that heavy 442 

isotopes tend to bind to oxygen donors, while light isotopes accumulate in Zn complexes with 443 

sulphur donors, and Zn complexes with nitrogen donors would be between the two or 444 

isotopically heavier than with oxygen donors (Fujii et al. 2014). Recent experimental evidence 445 

has confirmed that the heavy isotopes accumulate in Zn complexes with DMA, and structurally 446 

similar ligands (Markovic et al. 2016). Another potential source of isotope discrimination is Zn 447 

sequestration in the vacuoles. The activity of the vacuolar transporters regulates the amount 448 

of Zn in the cytosol available for translocation by either increasing or decreasing the amount of 449 

Zn sequestered in the vacuoles. Several studies conclude that MTP1 and MTP3 (Metal 450 
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Tolerance Proteins) facilitate the efflux of Zn2+ from the cytosol into the vacuole (reviewed by 451 

Ricachenevsky et al. 2013). The vacuole has an acidic pH around 5.2 (Shen et al. 2013) and Zn 452 

can stay soluble as Zn2+. Similarly, AtZIF1 is a tonoplast transporter that carries Zn complexes 453 

with NA into the vacuoles (Haydon et al. 2012). Transporter AtNRAMP4 facilitates Zn influx 454 

from the vacuole back into the cytoplasm (Lanquar et al. 2010). Additionally, Zn2+ can diffuse 455 

from one cell to another across the plasmodesmata, small openings in the cell walls that allow 456 

the cytoplasm of adjacent cells to communicate. This is a kinetically controlled process that will 457 

favour the light isotopes (Criss 1999).  458 

To reach the shoot, Zn needs to leave the root symplast and enter the xylem, a conductive 459 

tissue formed by the walls of dead cells containing no cytoplasm. Transporters HMA2 and 460 

HMA4 are plasma membrane transporters of the HMA family (Heavy Metal ATPases) 461 

expressed in the vasculature of the root, and are thought to export Zn from the adjacent cells 462 

to the xylem in arabidopsis (Eren and Argüello 2004). Of these, HMA2 transports Zn bound to a 463 

ligand while HMA4 transports Zn2+. The xylem sap is considered an acidic environment with pH 464 

around 5.5 where Zn2+ could stay in solution, although it can be alkalinized in response to 465 

drought, flooding, bicarbonates, nutrients, light, change of season, daily rhythms, and disease 466 

(Wilkinson, Janet E. Corlett, Ludovic Oger et al. 1998). Little is known about how these 467 

fluctuations affect Zn xylem loading and forms in the xylem sap. In the xylem sap of strategy I 468 

plants Zn is predominantly transported as Zn2+ with the remaining fraction bound to organic 469 

acids (Salt et al. 1999; Monsant et al. 2011; Lu et al. 2014). The aminoacids histidine 470 

(Kozhevnikova et al. 2014) and NA (Cornu et al. 2015) have also been proposed a role in 471 

Zn-binding in the xylem. In strategy II plants, Zn-DMA complexes have been identified in root 472 

extracts of Fe-deficient wheat (Xuan et al. 2006), and in the shoots of japonica rice (Tsednee et 473 

al. 2016), which suggests that Zn could be transported up the xylem as Zn-PS complexes. All of 474 

these steps might contribute to the isotope ratios of roots and shoots.  475 

 476 
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Zinc translocation to the leaves 477 

The few experiments that analysed leaves separately found generally isotopically lighter Zn 478 

compared to the stems (Δ66Znleaves-stem -1.67 to 0.10‰)(Viers et al. 2007; Moynier et al. 2009; 479 

Caldelas et al. 2011; Viers et al. 2015). Furthermore, the leaves of various plant species were 480 

increasingly depleted in 66Zn the further they were from the root (Fig. 3). First, tree leaves 481 

collected from a pristine tropical drainage basin were recorded as isotopically lighter 482 

(δ66Znleaves -0.03‰ to -0.91‰) than the leaves of the herbaceous species in the same area 483 

(0.26 to 0.63‰) (Viers et al. 2007). The observations by Viers et al. 2007 were confirmed in 484 

bamboo leaves collected at various heights (20, 50, and 80 cm), which showed a progressive 485 

decrease of δ66Zn with distance (-0.19‰, -0.32‰, and -0.55‰ respectively)(Moynier et al. 486 

2009). Both studies proposed that the negative δ66Zn of the leaves could be explained as the 487 

sum of two processes: i) Faster transport of 64Zn across the plasma membranes, throughout Zn 488 

transfer from the roots to the leaves, and ii) preferential unload of 66Zn from the xylem sap 489 

into the adjacent cells by low-affinity transporters, leaving the xylem solution progressively 490 

enriched in 64Zn. Zinc binding to the cell walls lining the xylem vessels might also occur, 491 

favouring the depletion of heavy isotopes in the xylem sap via ion exchange. A similar trend 492 

was observed in reeds, where a fractionation of up to -0.44‰ was measured between leaves 493 

sampled at 5 and 100 cm (Caldelas et al. 2011). The extent of Zn fractionation with height was 494 

very consistent: -0.005‰ cm-1 in reed (Caldelas et al. 2011) and -0.006‰ cm-1 in bamboo 495 

(Moynier et al. 2009).  496 

To leave the xylem and enter the leaf symplast Zn must first cross the membranes of the 497 

companion cells, a step mediated by transporters yet to be characterized. Membrane 498 

transporters AtIRT3 and OsZIP4 are expressed in the vasculature of the leaves and might 499 

facilitate both xylem unloading and phloem loading of Zn2+ (Ishimaru et al. 2005; Lin et al. 500 

2009). The xylem unloading of Zn2+ could contribute to the enrichment of light isotopes 501 

observed in the leaves relative to the stem. The xylem loading, transport, and unloading of Zn 502 
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in form of Zn-NA or other Zn complexes is not expected to discriminate Zn isotopes. 503 

Alternatively, Zn can be remobilized from older tissues and transported to the leaves via the 504 

phloem. Excess Zn is stored in the vacuoles of the leaves in form of Zn complexes with citrate, 505 

malate, or NA (Aucour et al. 2011; Tang et al. 2012). The formation of those Zn complexes 506 

would likely favour the accumulation of heavy Zn isotopes in the complexes in the vacuole, 507 

leaving an isotopically lighter Zn2+ pool available for transport in the cytosol. Tonoplast 508 

transporters NRAMP3 and NRAMP4 in Arabidopsis facilitate Zn2+ efflux from the vacuole and 509 

are expressed in leaves (Lanquar et al. 2010). Zinc facilitated diffusion across the tonoplast 510 

should be faster for 64Zn, which would contribute further to the accumulation of light isotopes 511 

in the Zn2+ pool available for transport. However, the pH in the cytosol is close to neutral 512 

(7.2-7.5), while the phloem sap is slightly alkaline (7.3-8.5) (Dinant et al. 2010). In these 513 

conditions Zn must bind to an intracellular ligand to stay soluble, probably NA (von Wiren et al. 514 

1999; Nishiyama et al. 2012). This would probably lead to the accumulation of 66Zn in the 515 

Zn-NA complexes, although this has not been tested. Metal loading from the cytosol of the 516 

companion cells into the phloem is likely facilitated by plasma membrane transporters of the 517 

YSL family, which transport metal complexes with NA. Transporters OsYSL2, AtYSL1, and 518 

AtYSL3 transport NA complexes with Fe and other metals and are expressed in the vasculature 519 

of the leaves (Koike et al. 2004; Chu et al. 2010). Analogous YSL transporters might be involved 520 

in Zn loading from the phloem, but they have not been identified yet. In the phloem, Zn is 521 

predominantly found as Zn-NA complexes (Nishiyama et al. 2012; Hazama et al. 2015). The 522 

mechanisms of Zn unloading from the phloem at the leaves are poorly known. The phloem 523 

loading, transport, and unloading of Zn in form of Zn-NA complexes is not expected to 524 

discriminate Zn isotopes. Taking all the evidence together, it is yet not clear if Zn 525 

remobilization from older leaves to young ones could account for the enrichment of light 526 

isotopes in leaves with height. To advance our understanding of Zn isotopic fractionation from 527 

the stem to the leaves, and from older to younger leaves, we need to first determine the Zn 528 
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forms in all the relevant Zn pools in the leaves, and to characterize the transporters that move 529 

Zn between those pools. 530 

 531 

Zinc allocation to the seeds 532 

Evidence of isotopic fractionation during Zn transfer to the seeds is scarce. A recent study 533 

found that in soil-grown rice the seeds were isotopically lighter than the shoots (Δ66Znseed-534 

shoot -0.8 to -0.7‰)(Arnold et al. 2015). This was attributed to Zn remobilization from the stem 535 

during grain filling. However, the specific causes for this enrichment of the light isotopes are 536 

not clear, because there is insufficient information of the molecular mechanisms and Zn 537 

species involved in Zn transfer to the seeds in rice. Zinc in the rice grain is delivered via two 538 

routes: i) phloem loading after remobilization from the leaves and stems (as discussed above), 539 

and ii) direct xylem-to-phloem transfer in the stem and the nodes of the seed panicle, the 540 

loosely-branched cluster of seeds (Yoneyama et al. 2010; Wu et al. 2010). The plasmatic 541 

membrane transporter OsHMA2 is highly expressed at the nodes, and is believed to be 542 

involved in the xylem-to-phloem transfer of Zn to the panicle (Yamaji et al. 2013). Tonoplast 543 

transporters OsVIT1 and OsVIT2 (Vacuolar Iron Transporters) facilitate the influx of Zn into the 544 

vacuole and are mainly expressed in the flag leaves, suggesting a primary role in the regulation 545 

of Zn export to the seeds (Zhang et al. 2012). The activity of these transporters could 546 

contribute to the observed enrichment of the light isotopes in seeds relative to shoots in rice, 547 

but additional fractionation processes likely contribute. To allocate Zn to the developing seeds, 548 

Zn must exit the phloem and cross a series of species-specific apoplastic barriers between the 549 

maternal transfer cells, specialized in the transfer of solutes, and the endosperm of the seed, 550 

the tissue that surrounds and nourishes the embryo (Olsen and Palmgren 2014). These 551 

apoplastic barriers and the processes that control Zn transport across them are poorly known. 552 

In barley, a detailed model of Zn trafficking to the seed has been proposed based on RNA 553 

expression data from seed tissues (Tauris et al. 2009), which suggests that Zn would enter the 554 
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maternal transfer cells from the phloem in form of Zn-NA complexes. In the cytosol of the 555 

transfer cells Zn appears to be in form of Zn-NA or Zn-PS complexes, as indicated by the high 556 

expression of two NA synthases (NAS5-2 and NAS9), and one NA aminotransferase (NAATB, 557 

that converts NA into DMA) (Tauris et al. 2009). The symplastic movement of Zn-NA complexes 558 

from the phloem into the transfer cells would not cause any isotopic fractionation, whereas 559 

the formation of Zn-complexes in the cytosol of the transfer cells would lead to the 560 

accumulation of heavy isotopes in the complexes relative to the Zn2+ fraction. The vacuolar 561 

transporters MTP1, MTPc4, VIT1-1, and CAX1a,b are highly expressed in the transfer cells, and 562 

thought to promote Zn2+ flow into the vacuole (Tauris et al. 2009). Transporting Zn2+ into the 563 

vacuole would likely result in the accumulation of light Zn isotopes in the vacuole relative to 564 

the cytosol. During grain filling, Zn2+ stored in the vacuole of the transfer cells would be 565 

remobilized by the vacuolar transporter NRAMP3 (Tauris et al. 2009). This transporter might 566 

further enrich the light isotopes in the remobilized fraction relative to the vacuole. Thus Zn 567 

storage and remobilization might cause the enrichment of light isotopes in the Zn2+ fraction 568 

available for export to the seed relative to the Zn-NA fraction in the cytosol. Zinc efflux from 569 

the cytosol of the transfer cells would be facilitated by plasma membrane transporters HMA2, 570 

4, and 8, which are proposed to pump Zn2+ out to the endosperm cavity (Tauris et al. 2009) and 571 

might cause further enrichment of the light isotopes in the Zn pool allocated to the seed. 572 

Tauris and co-workers proposed that Zn would be in form of Zn2+ or Zn-complexes with NA or 573 

DMA in the endosperm cavity, while Zn2+ would diffuse towards the seed, a 574 

kinetically-controlled process that favours the light isotopes. In the aleurone (the outermost 575 

layer of the endosperm) and the embryo, Zn2+ uptake would be facilitated by transporters of 576 

the ZIP family, while YSL6, 9, and 12 would do the same with the Zn-complexes. Zinc efflux 577 

from the seed back to the endosperm cavity was probably minimal, since the HMA 578 

transporters involved in Zn efflux from the cytosol back into the apoplast showed much lower 579 

transcription rates in the aleurone, endosperm, and embryo than in the maternal transfer cells 580 
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(Tauris et al. 2009). This suggests that Zn movement and compartmentalization within the 581 

seed after Zn uptake in the aleurone would not substantially add to the fractionation of Zn 582 

isotopes between the seed and the shoot.  583 

In summary, it appears that the enrichment of light isotopes in the seeds relative to the shoots 584 

could originate from Zn2+ storage in the vacuoles of the transfer cells, efflux from transfer cells, 585 

diffusion in the endosperm cavity, and uptake by aleurone cells. Additionally, mechanisms that 586 

lead to the enrichment of light isotopes in the phloem sap relative to the bulk shoot, like Zn 587 

remobilization from the older tissues or direct xylem-to-phloem Zn transfer could contribute to 588 

make seeds isotopically lighter than the shoots. The δ66Zn of the grain might prove an 589 

interesting tool for the development of Zn biofortification in crops, which could help us 590 

identify the key mechanisms involved in Zn allocation into the seed. However, there is a 591 

pressing need for more isotope data from seeds and a better knowledge of the molecular 592 

mechanisms behind Zn allocation to the seed and the Zn forms in the different reservoirs. 593 

 594 

Fractionation of Zn isotopes associated with plants response to Zn excess 595 

Accumulation in the roots of Zn-tolerant plants  596 

Tolerant plants are those that can grow and develop when [Zn] in the environment would 597 

usually be deleterious. In tolerant plants exposed to an excessive amount of Zn in the 598 

environment, roots play an important role in Zn detoxification and sequestration to protect 599 

sensitive photosynthetic tissue. The response of tolerant plants to high Zn levels can cause 600 

significant changes in the distribution of Zn isotopes across the plant organs in some species. In 601 

reed (Phragmites australis [Cav.] Trin. ex Steud) grown hydroponically with sufficient Zn supply 602 

(3x10-6 M) the roots, rhizomes, and shoots were similarly enriched in heavy isotopes relative to 603 

the growth solution (~0.2‰)(Caldelas et al. 2011)(Fig. 4a). By contrast, the addition of Zn in an 604 

excessive amount (2x10-3 M) caused further enrichment of the heavy isotopes in roots relative 605 

to the growth solution (Δ66Znroot-solution=0.47 ‰) and relative to the stems (Δ66Znstem-root=-0.84 606 
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to -0.94‰). The magnitude of both isotopic effects was larger than reported for 607 

hydroponically grown crops (Δ66Znroot-solution -0.02 to 0.16‰, and Δ66Znshoot-root -0.25 608 

to -0.56‰)(Weiss et al. 2005; Jouvin et al. 2012; Smolders et al. 2013). Excess Zn can 609 

precipitate with insoluble phosphates or silicates at the root epidermis, the intercellular 610 

spaces, and the cell walls of the roots, a process termed biomineralization that might reduce 611 

Zn influx into the symplast (Neumann and zur Nieden 2001; Straczek et al. 2008; Medas et al. 612 

2015; De Giudici et al. 2015). In tobacco, Zn binds to the carboxyl and hydroxyl groups of 613 

pectin and to the hydroxyl groups of cellulose in the cell walls of roots (Straczek et al. 2008). 614 

The composition of the cell walls changes in response to excess Zn, modifying its permeability, 615 

binding capacity, and affinity to enhance Zn tolerance (Lin and Aarts 2012). Inside the cell, Zn 616 

binds to various ligands to limit its interaction with sensitive cellular components. 617 

Nicotinamine forms complexes with Zn that are then sequestered in the vacuoles of the root 618 

cells (Trampczynska et al. 2010; Haydon et al. 2012). Phytochelatins (PC) are small peptides 619 

synthesized from gluthathione that bind to Zn and have a role in Zn tolerance and 620 

accumulation in the roots (Tennstedt et al. 2009). Free Zn2+ and Zn-ligand complexes are 621 

compartmentalized in the vacuole so they cannot interfere with the cell metabolism. This is 622 

achieved by means of specific vacuolar transporters. Several tonoplast Zn transporters 623 

involved in Zn sequestration in the vacuoles of the root cells have been described, belonging to 624 

the protein families MTP, HMA, and ZIF (Zinc-Induced Facilitators)(reviewed by Peng and Gong 625 

2014). Arabidopsis AtMTP1 and AtMTP3, OsMTP1 in rice, and HvMTP1 in barley are expressed 626 

in the roots, facilitate Zn efflux to the vacuole, and have a role in Zn tolerance (Kobae et al. 627 

2004; Arrivault et al. 2006; Podar et al. 2012; Menguer et al. 2013). A similar function has been 628 

attributed to AtHMA3 and AtZIF2 in arabidopsis, which are mainly expressed in the roots and 629 

are involved in Zn tolerance (Morel et al. 2009; Remy et al. 2014). Finally, AtZIF1 is a tonoplast 630 

transporter in arabidopsis that carries Zn-NA complexes into the vacuoles and is mostly 631 

expressed in the roots (Haydon et al. 2012).  632 
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The individual contribution of each of the mechanisms of Zn sequestration in the root 633 

discussed above to the partitioning of Zn isotopes in plants is not yet clear. In Phalaris 634 

arundinacea L. grown in soil receiving Zn-polluted stormwater, around 30-40% of the Zn in 635 

roots was present in tetrahedral coordination, which may correspond to apoplasmic Zn binding 636 

to the cell walls (Aucour et al. 2015)(Fig. 4a). The rest of the Zn fraction was coordinated in an 637 

octahedral structure, probably binding to ligands like organic acids and sequestered in the 638 

vacuoles. The Δ66Znshoot-root in this study was -0.83‰, very similar to previous results in P. 639 

australis (Δ66Znshoot-root=-0.84 to -0.94‰)(Caldelas et al. 2011), and to recent data in Noccaea 640 

caerulescens (J.Presl & C.Presl) and Thlaspi arvense L. (Δ66Znshoot-root =-0.79‰ in both species) 641 

(Tang et al. 2016). In the later study Zn in roots was separated into symplastic and apoplastic 642 

fractions by successive extractions. Most of Zn in roots was in the symplastic fraction (69 to 643 

93%), and in both species the proportion of apoplastic Zn increased around 20% at high [Zn] 644 

(50 µM for N. caerulescens and 5 µM for T. arvense, in accord with their different tolerance). 645 

This evidence suggests a common pattern of Zn exclusion during Zn excess for P. australis, P. 646 

arundinacea, N. caerulescens and T. arvense, where isotopically heavy Zn would be 647 

sequestered in the apoplast. However, not all Zn-tolerant species show enhanced 66Zn 648 

accumulation in the roots when exposed to high Zn levels. For instance, Silene vulgaris 649 

([Moench.] Garcke.) growing in a contaminated soil showed no significant shift between soil, 650 

roots, and shoot (Tang et al. 2012)(Fig. 4b). Furthermore,66Zn was enriched in the roots of the 651 

tolerant grass Agrostis capillaris (L.) grown in two different technosols compared to soils and 652 

to shoots (Δ66Znroot-solution=0.07-0.19‰, Δ66Znshoot-root=-0.24 to -0.40‰)(Houben et al. 2014)(Fig. 653 

4d), but the magnitude of the fractionation was comparable to that of non-tolerant plants. The 654 

same seems to hold for rapeseed (Brassica napus L.) and rye grass (Lolium multiflorum L.) 655 

grown in pots containing three multi-polluted soils (Δ66Znroot-solution=0.05-0.20‰, 656 

Δ66Znshoot-root=-0.04 to -0.39‰)(Couder et al. 2015).  657 
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Besides the sequestration of Zn in the roots, plants display other responses to Zn excess that 658 

possibly discriminate Zn isotopes. Both Arabidopsis thaliana (L) and Arabidopsis halleri (L.) 659 

secrete NA to the rhizosphere, where it forms Zn-NA complexes, and A. halleri increases NA 660 

secretion when exposed to high Zn levels in the environment (Tsednee et al. 2014). In the 661 

same study, [Zn] in the roots of A. thaliana decreased by up to 60% when 50 µM NA was 662 

added to the soil, indicating that the Zn-NA complexes were not taken up by the root cells. It 663 

was concluded that plants secrete NA to the rhizosphere to reduce Zn bioavailability in the soil. 664 

Moreover, the secretion of NA increased in A. halleri in response to excess Zn To illustrate the 665 

impact of root exudates on the isotopic composition of the soil solution, Agrostis capillaris was 666 

grown in columns filled with two technosols and compared with controls without plant cover 667 

(Houben et al. 2014). The columns were irrigated with nutrient solution in excess and allowed 668 

to drain, and the resulting leachates were collected and analyzed. Without plants, the 669 

leachates were isotopically lighter than the soil (Δ66Znleachates-soil =-0.12 to -0.21‰), meaning 670 

that the leaching of free Zn2+ from the soil removed the light isotopes. By contrast, in columns 671 

planted with A. capillaris the leachates were isotopically heavier than the soil (Δ66Znleaches-soil 672 

=0.14 to 0.04‰), with up to 4 times more Zn. This was attributed to the mobilization of Zn 673 

from an isotopically heavier pool in the soil facilitated by the root exudates. Further work is 674 

needed to determine whether the mobilized Zn is then taken up by the A. capillaris or remains 675 

in the soil. On top of stimulating the secretion of root exudates, an excessive Zn supply 676 

modifies the activity of some Zn transporters in the membrane of the root cells, which could 677 

have an impact in Zn isotope partitioning. High Zn levels inhibit the activity of plasma 678 

membrane transporters like AtIRT3 in arabidopsis, involved in Zn uptake by the roots (Lin et al. 679 

2009). The Zn efflux transporter AtPCR2 in arabidopsis exports excess Zn from the cytoplasm 680 

to outside the cell, and its expression in yeast is increased at high Zn levels (Song et al. 2010). 681 

Another process contributing to the accumulation of 64Zn in the aerial parts of Zn-tolerant 682 

plants under Zn stress has been suggested in B. napus and L. multiflorum grown in three 683 
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different soils with high Zn (Couder et al. 2015). A significant negative correlation (R2=0.83, 684 

p=0.01) was found between the Δ66Znshoot-root and the transpiration per total dry biomass. The 685 

authors proposed that bulk mass flow driven by transpiration controlled Zn flux from the soil 686 

into the plant under high Zn supply. However, the precise mechanism by which the 687 

fractionation could be generated during the convective transport of Zn up the shoot remains 688 

obscure. The preferential binding of 66Zn to the cell walls of the xylem vessels might cause this 689 

effect, but experimental evidence is missing. Besides, it has been suggested that Zn might 690 

enter the root xylem via the apoplastic pathway (White et al. 2002). Using literature data for N. 691 

caerulescens during high Zn supply (Lasat et al. 1996; Pence et al. 2000; Lombi et al. 2001), 692 

White and coworkers argue that Zn influx to the cells is smaller than Zn flux to the xylem, and 693 

insufficient to account for the Zn content of the shoots (White et al. 2002). A better 694 

understanding of plants response to Zn excess is crucial to discuss the distribution of Zn 695 

isotopes associated with it and to identify the predominant mechanisms.  696 

 697 

Increased uptake and sequestration in the aerial parts of hyperaccumulators 698 

Some soils are naturally high in Zn due to the composition of the parent rock (e.g. calamine or 699 

serpentine soils) (Kazakou et al. 2010; Escarré et al. 2010), and plants growing on them have 700 

adapted to these conditions. These metallicolous plants tolerate Zn levels that would cause 701 

death in other plants, and sometimes display unique hyperaccumulation traits: an increased 702 

rate of Zn uptake, a more efficient root-to-shoot translocation, and a higher sequestration 703 

capacity in the leaves (>3,000 µg Zn g-1 shoot dry matter) without showing any toxicity 704 

symptoms (Lasat et al. 2000; Broadley et al. 2007). In these plants, Zn is compartmentalized in 705 

the leaf cell walls and vacuoles (Küpper et al. 1999). The Zn-hyperaccumulator Arabidopsis 706 

halleri and the non-accumulator Arabidopsis petraea (A. lyrata subsp. petraea [L.] O'Kane & 707 

Al-Shehbaz) were grown hydroponically to compare the partitioning of Zn isotopes under Zn 708 

excess (10-5 M)(Aucour et al. 2011)(Fig. 4c). The heavier Zn isotopes were enriched in the roots 709 
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of A. halleri compared with the solution (10 or 250 µM Zn, Δ66Znroot-solution=0.4-0.8‰) and the 710 

shoots (Δ66Znshoot-root=-0.7‰), in line with results obtained for P. australis (Caldelas et al. 2011). 711 

By contrast, the roots of the related non-accumulator A. petraea had a similar δ66Zn as the 712 

solution (Aucour et al. 2011). The enrichment of heavier Zn isotopes in the roots of A. halleri 713 

relative to the roots of A. petraea was explained as the result of Zn storage in the vacuoles of 714 

the root cells in form of Zn-phosphates (Aucour et al. 2011). Previous spectroscopic work had 715 

revealed that in A. halleri Zn binds mostly to phosphates in the roots, and to citrate or malate 716 

in the shoots (Sarret et al. 2002). Using ab initio calculations, Fujii and Albarède compared the 717 

δ66Zn of those three Zn species at total concentrations of 0.05 M (Zn), 0.01 M (citrate and 718 

malate), and 1 M (phosphate). At pH around neutral, Zn-phosphates were expected to enrich 719 

isotopically heavier Zn with respect to the solution, whilst Zn-malates and Zn-citrates would 720 

both concentrate light isotopes relative to the solution (Fujii and Albarède 2012). The Δ66Zn 721 

between Zn-citrates (or Zn-malates) and Zn-phosphates would be around -0.8 to -0.9‰, 722 

consistent with the Δ66Znshoot-root of A. halleri (-0.7‰) and P. australis (-0.8 to -0.9‰)(Aucour et 723 

al. 2011; Caldelas et al. 2011). By contrast, at pH below 5 all three Zn complexes would have a 724 

similar isotopic composition as the solution (Fujii and Albarède 2012), in agreement with the 725 

roots of A. petraea having a similar δ66Zn as the source (Aucour et al. 2011; Tang et al. 2012). 726 

Fujii and Albarède suggested that A. halleri might maintain the pH of the root cells around 727 

neutral to promote Zn complexation with phosphates as a tolerance mechanism, which would 728 

cause most of the heavy enrichment of the roots relative to the soil in this species (Fujii and 729 

Albarède 2012). The predominant Zn species in P. australis roots and shoots remain elusive, 730 

but the distribution of Zn isotopes is similar to that of A. halleri. This suggests that Zn 731 

complexation with phosphate in the roots could be a key tolerance mechanism in P. australis, 732 

which is not a hyperaccumulator species.  733 

Compared with the plant-available Zn of the soil, 66Zn was enriched in the roots of the 734 

hyperaccumulator N. caerulescens collected from a Zn-contaminated soil, a serpentine soil, 735 
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and a non-metalliferous soil (0.40-0.72‰)(Tang et al. 2012)(Fig. 4b). Analysis of the Zn 736 

speciation in N. caerulescens has shown that in the roots Zn is accumulated as Zn-phytate (a 737 

polyphosphate) or Zn-histidine (Monsant et al. 2011). In the leaves, a mixture of Zn-citrate and 738 

Zn-malate predominates in the epidermis while Zn-NA is the main form in the mesophyll 739 

(Schneider et al. 2013). According to ab initio calculations, Zn complexes with histidine are 740 

isotopically lighter than with citrates, malates, and phosphates by roughly -0.4, -0.3, and -1‰, 741 

respectively (Fujii et al. 2014). Besides, Zn-phosphates are isotopically heavier than Zn-citrates 742 

and Zn-malates by around 0.8‰ (Fujii and Albarède 2012). The isotopic signature of Zn-NA 743 

complexes found in this hyperaccumulator is not yet known. With the information available, 744 

the isotope partitioning observed between the shoot and the root in N. caerulescens could be 745 

explained by the distribution of phosphates, citrates, and malates. A different interpretation 746 

was proposed by Tang and co-workers for the accumulation of 66Zn in the roots of N. 747 

caerulescens: the preferential transfer of 64Zn to the xylem by means of the NcHMA4 748 

transporter (Tang et al. 2012). This plasma membrane transporter orthologous to arabidopsis 749 

AtHMA4 is highly expressed in the vascular tissue of N. caerulescens due to multiple gene 750 

copies (Ó Lochlainn et al. 2011), and is likely to be responsible for the increased export of Zn to 751 

the xylem in this species that is part of the hyperaccumulation response (Papoyan and Kochian 752 

2004; Craciun et al. 2012). Two other transporters, NcZNT1 and NcMTP1, are up-regulated in 753 

N. caerulescens. The plasma membrane protein NcZNT1 is expressed in the root epidermis and 754 

vasculature, and is involved both in Zn uptake in the root and Zn transport to the shoot. The 755 

tonoplast transporter NcMTP1 (=NcZTP1, TcZTP1) is expressed mainly in leaves and 756 

contributes to Zn sequestration in the vacuoles (Küpper and Kochian 2010; Milner et al. 2012). 757 

Similar transporters have been identified in other Zn hyperaccumulators, like AhMTP1 and 758 

AhHMA3 in A. halleri, or NgMTP1 in Noccaea goesingensis ([Halácsy] F.K.Mey] (Becher et al. 759 

2004; Shahzad et al. 2010). The increased activity of the above transporters could explain the 760 

accumulation of 64Zn in the shoots of hyperaccumulators. 761 
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 762 

Isotopic fractionation of iron by plants 763 

Iron uptake in strategy I and II plants  764 

Iron can change its oxidation state during uptake or translocation within the plant, and those 765 

redox conversions induce large isotopic fractionation. Strategy I plants (non-graminaceous 766 

species) use the proton ATPase AHA2 localized to the plasma membrane to release protons to 767 

the rhizosphere during Fe deficiency, increasing the solubility of Fe(III) (Santi and Schmidt 768 

2009). The ferric reductase oxidase FRO2 then reduces the Fe(III) complexes at the plasma 769 

membrane to aqueous Fe(II) (Robinson et al. 1999). Finally, Fe(II) is taken up by the roots via 770 

the plasma membrane protein IRT1, the main high-affinity Fe transporter of the plant root 771 

(Vert et al. 2002). By contrast, strategy II plants secrete PS to the rhizosphere to solubilise 772 

Fe(III) during Fe deficiency (Takagi et al. 2008). The Fe(III)-PS complexes are transported into 773 

the root symplast by plasma membrane transporters of the OPT family like ZmYS1 in maize, 774 

HvYS1 in barley, and OsYSL15 in rice (Murata et al. 2006; Ueno et al. 2009; Inoue et al. 2009; 775 

Suzuki et al. 2012). In a survey involving ten species grown in agricultural soil, the stems, 776 

leaves, and grains of strategy I plants accumulated 54Fe compared to the soil (Δ56Fex-soil up 777 

to -1.6‰, relative to the IRMM-014 standard), while those of strategy II plants (grasses) were 778 

isotopically heavier (Δ56Fex-soil up to 0.2‰) (Guelke and von Blanckenburg 2007). In aqueous 779 

solutions, there is a strong fractionation of the isotopes between Fe(III) and Fe(II) 780 

(Δ56Fe(III)-Fe(II) = 2.8‰), with the light isotopes accumulating in the Fe(II) (Johnson et al. 781 

2002). The enrichment of 54Fe in the aerial parts of strategy I plants was attributed to the 782 

reduction of Fe(III) in the soil by FRO2 previous to high-affinity uptake. The enrichment of 56Fe 783 

in the aerial parts of strategy I plants was best explained by isotopically heavy Fe(III) binding to 784 

PS in the soil.  785 

However, Strategy II plants produce little PS in absence of Fe-deficiency (Cakmak et al. 1994; 786 

Suzuki et al. 2006; Suzuki et al. 2008). The alpine species Oxyria digyna ([L.] Hill) and Rumex 787 
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scutatus (L.), both strategy I, showed an enrichment of the light isotopes in the entire plants 788 

relative to the soil (Δ56Feplant-soil -0.60 for O. digyna and -1.03‰ for R. scutatus), while in the 789 

graminaceous Agrostis gigantea (Roth) there was very little fractionation (-0.07‰)(Kiczka et al. 790 

2010b). The partitioning of Fe isotopes in the two dicots was attributed to H+ and 791 

ligand-promoted Fe dissolution from the soil, which favours light isotopes (Wiederhold et al. 792 

2006; Chapman et al. 2009; Kiczka et al. 2010a). The smaller fractionation in A. gigantea was 793 

ascribed to different strategy II phenomena not involving PS, like Fe binding to other root 794 

exudates. The authors argued that the amount of available Fe in the soil (1500 µg g-1) was very 795 

high, and the Fe content of plant samples was not indicative of Fe deficiency, making PS 796 

contribution to Fe uptake unlikely. In beans (Phaseolus vulgaris L., strategy I) and oats (Avena 797 

sativa L., strategy II) grown in a nutritive solution containing 20 µM Fe(III)-EDTA (Fe-sufficient), 798 

the light isotopes were enriched in both species, but the magnitude of Δ56Feplant-solution was 799 

larger in bean (-1.2‰) than in oats (-0.5‰) (Guelke-Stelling and von Blanckenburg 2011). The 800 

accumulation of light isotopes in both plants was explained by Fe(III)-EDTA reduction followed 801 

by the uptake of Fe2+ on the surface of the roots. Reduction of Fe(III)-chelates is a mechanism 802 

present both in strategy I and II plants in absence of Fe-deficiency (Bienfait et al. 1983; 803 

Bruggemann and Moog 1989). To account for the smaller magnitude of Δ56Feplant-solution in oats, 804 

Guelke-Stelling and von Blankenburg proposed that two mechanisms could compete with the 805 

reduction of Fe(III)-complexes: i) direct uptake of Fe(III)-EDTA complexes, or ii) Fe(III) binding 806 

to PS or phosphates in the apoplast. The uptake of either Fe(III)-EDTA or Fe(III)-PS would not 807 

fractionate Fe isotopes, but the ligand exchange (from EDTA to PS) likely would. The Fe(III)-PS 808 

complexes have a lower stability constant (1018)(Murakami et al. 1989) than the Fe(III)-EDTA 809 

complexes (1025)(Smith and Martell 1989), which means that the lighter isotopes would 810 

accumulate in the PS complexes, the species with the weaker bonds (Criss 1999). The direct 811 

uptake of Fe(III)-chelates has been reported in strategy I and II species (Römheld and 812 

Marschner 1981; Orera et al. 2010). Strategy II plants secrete PS in absence of Fe-deficiency, 813 
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although the release rate is smaller (Erenoglu et al. 2000). However, PS release in oats greatly 814 

depends on the cultivar, with Fe-inefficient varieties apparently not capable of producing 815 

much PS even in Fe-deficient conditions (Jolley and Brown 1989). The amount of PS released to 816 

the solution, the forms of Fe predominant in the shoots, and the oats cultivar used were not 817 

indicated in the Guelke-Stelling and von Blankenburg study. This makes it difficult to establish 818 

which of the two proposed uptake routes (reduction combined with direct uptake of 819 

Fe-chelates, or uptake of Fe-PS complexes) predominates in Fe-sufficient oats. 820 

Another mechanism for Fe uptake has been suggested for rice. The shoots of rice grown in 821 

aerobic and anaerobic conditions had the same fractionation relative to the soil (Δ56Feshoot-soil 822 

up to -0.5‰) in spite of the likely difference in Fe redox forms and concentration of Fe(III)-PS 823 

complexes (Arnold et al. 2015), and the magnitude of the fractionation was smaller than in 824 

previous work (Guelke and von Blanckenburg 2007; Kiczka et al. 2010b). It was suggested that 825 

a substantial amount of Fe was absorbed directly as Fe2+ and translocated up the shoot with no 826 

redox conversions (Arnold et al. 2015), since rice can take Fe2+ up from the soil in aqueous 827 

form directly and without previous solubilization by PS (Ishimaru et al. 2006). Future work 828 

must be addressed to test this hypothesis by complementing the isotope data with additional 829 

data, including Fe speciation in plants and soils, and PS release. 830 

 831 

Xylem loading and unloading of Fe 832 

Further discrimination of the isotopes occurs during Fe translocation within the plant. In 833 

strategy I and II plants growing in Fe-sufficient soil, where a smaller contribution from PS could 834 

be expected, the conductive tissue of the root (stele) was isotopically lighter than aerial parts 835 

of the plant (Δ56Festem-stele up to 3.0‰) (Kiczka et al. 2010b). This was attributed to the 836 

reduction of apoplastic Fe(III) and transfer of Fe(II) across the cell membrane, and to the 837 

oxidation of Fe(II) to Fe(III) during the formation of Fe(III)-citrate complexes, which would then 838 

be exported to the xylem leaving the symplast of the stele isotopically lighter. The main form 839 
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of Fe in the symplast is Fe(II)-NA, while Fe in the xylem is Fe(III)-citrate (Rellán-Alvarez et al. 840 

2008; Rellán-Alvarez et al. 2010). This is in agreement with ab initio calculations of isotopic 841 

fractionation between Fe species, which predict that Fe(II)-NA would be isotopically lighter 842 

(≈2‰) than Fe(III)-citrate (Moynier et al. 2013). Moynier and co-workers noted that while 843 

redox changes accounted for the largest isotopic fractionations (≈3‰), speciation only could 844 

explain isotopic fractionations up to 1.5‰. 845 

In beans (strategy I) grown in 20 µM Fe(III)-EDTA solution δ56Fe decreased progressively from 846 

the stem to the leaves and the grains (δ56Fe -0.31, -0.69, and -1.90‰ respectively) (Guelke-847 

Stelling and von Blanckenburg 2011). By contrast, no discrimination was observed between the 848 

aerial parts and the roots in oats (strategy II) in the same study. The authors attributed the 849 

fractionation pattern of beans to the reduction of Fe(III) in the xylem to Fe(II) during transfer 850 

to the symplast of leaves and grains. The absence of fractionation in the above-ground organs 851 

in oats is compatible with the translocation of Fe(III)-PS complexes from the root to the shoot, 852 

and with the transfer of Fe(III) from Fe(III)-PS or Fe(III)-EDTA to NA without changing the redox 853 

form. In strategy II plants Fe(III) can be transported up the shoot as Fe(III)-NA complexes 854 

without a previous reduction step (von Wiren et al. 1999).  855 

 856 

Fe remobilization from older leaves to developing organs 857 

In two Fe-deficient soils, the leaves of beans became depleted of 56Fe between the first harvest 858 

and the fourth by up to -0.7‰ (Guelke and von Blanckenburg 2007). The remobilization of Fe 859 

from older leaves to developing organs was proposed as the origin of this pattern. Excess Fe is 860 

oxidized to Fe(III) and stored as phytoferritin in the plastids of plant cells, from where it can be 861 

mobilised upon demand (van der Mark et al. 1982). It was argued that a non-quantitative 862 

sequestration of Fe in the phytoferritin complexes would favour the accumulation of 863 

isotopically heavy Fe(III) in the phytoferritin, leaving a pool of isotopically light Fe(II) in the 864 

cytoplasm available for export to the developing tissues, and isotopically heavier older leaves. 865 
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In the same study, the leaves of oats and wheat did not show substantial fractionation 866 

between the first and the second harvest (Guelke and von Blanckenburg 2007). The authors 867 

proposed that in strategy II plants Fe could move in the phloem as Fe(III) binding to heavy 868 

mass ligands such as NA. Iron (III) can form complexes with NA (von Wiren et al. 1999), but a 869 

study of the chemical forms of Fe in the phloem sap of rice has detected Fe(III)-PS complexes 870 

instead of Fe(III)-NA complexes (Nishiyama et al. 2012). In the Fe-deficient soils where oats and 871 

wheat were grown in the Guelke and von Blankenburg study a strong contribution of PS to Fe 872 

uptake can be expected, so Fe(III) could move in the phloem as Fe(III)-PS. In agreement, the 873 

grains of rice grown both in aerobic and anaerobic Fe-deficient soils had a similar composition 874 

as the shoot (Arnold et al. 2015). 875 

Similar results were obtained in beans and oats grown in Fe-sufficient nutritive solution where 876 

Fe was given as Fe(III)-EDTA. The youngest leaves and the seeds of beans became isotopically 877 

lighter as plants grew (up to -1.75‰), but those of oats did not (Guelke-Stelling and von 878 

Blanckenburg 2011). By contrast, the leaves of both strategy I and II alpine species grown in an 879 

Fe-rich soil (where very little contribution from PS to Fe uptake could be expected) 880 

accumulated 56Fe with age (up to 1.5‰) (Kiczka et al. 2010b). Therefore it appears that in 881 

strategy II species the source of Fe determines the isotopic fractionation during remobilization. 882 

The uptake of Fe(III) binding to strong ligands like EDTA or PS causes no fractionation during Fe 883 

movement in the phloem, while the uptake of non-complexed Fe leads to a fractionation 884 

pattern analogous to that of strategy I species, indicative of a series of redox conversions.  885 

The partitioning of Fe isotopes between older and younger leaves is similar to that previously 886 

discussed in section 5.2 for Zn. The light Zn isotopes become enriched in the leaves with 887 

height. This effect could be an evidence of Zn isotope partitioning during Zn remobilization 888 

from older leaves to developing ones, analogous to that observed in Fe. While excess Fe is 889 

stored in the plastids in form of phytoferritin, excess Zn is stored in the vacuoles of the leaves 890 

in form of Zn complexes with citrate, malate, or NA (Aucour et al. 2011; Tang et al. 2012). 891 
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Moreover, Zn can bind to more than 1,000 proteins in the cytoplasm of plant cells (Broadley et 892 

al. 2007). If the heavy isotopes were enriched in the Zn bound to organic acids, amino acids, 893 

and proteins, this would leave an isotopically lighter Zn2+ pool available for transport. The 894 

constant mobilization of micronutrients from older to younger leaves as new leaves appear 895 

could thus explain the gradation in the isotope composition of the leaves with age for both Fe 896 

and Zn. 897 

 898 

Copper 899 

Fewer studies have focused on the isotopic fractionation of Cu in plants. Lentils (Lens culinaris 900 

Med.) germinated in distilled water showed a marked accumulation of 63Cu in shoots relative 901 

to seeds, i.e. Δ65Cushoot-seed of -0.34‰ (Weinstein et al. 2011). This effect was identical to that 902 

reported for Zn in the same experiment, i.e. Δ66Znshoot-seed = -0.34‰ (Moynier et al. 2009). In 903 

the study conducted by Weinstein and co-workers, aerial parts of Elymus virginicus (L.) were 904 

isotopically lighter than soil (-0.94 to -0.33‰), and leaves lighter than stems (-0.39 to -0.13‰). 905 

Furthermore, the δ65CuNIST976 of the leaves of Carex hirsutella (Mackenzie) decreased with 906 

height (from 7 to 43.5 cm), and the linear relationship between them (δ65Cu=-0.01*H-0.07, 907 

where H is the height in cm) was remarkably similar to that previously noted for Zn in bamboo 908 

(δ66Zn=-0.01*H-0.06)(Moynier et al. 2009; Weinstein et al. 2011). The authors concluded that 909 

both Cu and Zn were submitted to the same fractionation mechanisms during uptake and 910 

translocation, probably during transport across the cell membranes. However, a distinct 911 

pattern of fractionation during Cu uptake was later described in rice, lettuce, tomato, and 912 

durum wheat grown hydroponically (Jouvin et al. 2012). In these species, shoots accumulated 913 

63Cu relative to the solution in a range very similar to that of the Weinstein study 914 

(Δ65Cushoot-solution -1.06 to -0.34‰), and the roots generally had the same isotopic composition 915 

as the shoots (Δ65Curoot-solution -0.84 to -0.11‰). The accumulation of 63Cu in the roots was 916 

similar to that previously reported for 54Fe in beans and oats (Δ56Feroot-solution = -1.0 to -0.5‰), 917 
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which was attributed to Fe(III) reduction during Fe uptake (Guelke-Stelling and von 918 

Blanckenburg 2011). By contrast, Zn in the roots is typically enriched in heavy isotopes 919 

(Δ66Znroot-solution up to 0.8‰)(Weiss et al. 2005; Viers et al. 2007; Aucour et al. 2011). It was 920 

concluded that the enrichment of 63Cu in the roots was due to the reduction of Cu(II) to Cu(I) 921 

during Cu uptake by the root cells. Leaching of Cu(I) minerals has shown that 65Cu accumulates 922 

in the aqueous Cu(II) (Δ65Cumineral-solution -1.18 to -0.94‰)(Kimball et al. 2009). The fractionation 923 

during Cu(II) reduction to Cu(I) is similar to the fractionation observed during Cu uptake by the 924 

root by Jouvin and co-workers (Δ65Curoot-solution -0.84 to -0.11‰). The smaller fractionation in 925 

plants indicates a combination of reduction and another uptake mechanism that does not 926 

fractionate isotopes or takes a shift towards the heavy. In arabidopsis, Cu(II) reduction to Cu(I) 927 

is a pre-requisite for the high-affinity uptake of Cu by means of the transporter COPT1, and is 928 

mediated by the ferric reductase oxidases FRO5 and FRO4 (Bernal et al. 2012). The reductase 929 

FRO2 is responsible for Fe(III) reduction to Fe(II) prior to uptake mediated by the IRT1 930 

transporter, as discussed in the previous section. The reductase activity of the FRO family thus 931 

constitutes an important link between Cu and Fe homeostasis. Still, transporter COPT1 is 932 

responsible for only 40-60% of Cu uptake in arabidopsis under adequate Cu nutrition 933 

(Sancenón et al. 2004). Plants take up Cu(II) in form of Cu2+ or PS-Cu(II) complexes (Roberts et 934 

al. 2004; Hötzer et al. 2012). The transport of Cu2+ across the cell membrane during uptake in 935 

the roots is probably facilitated by cation transporters like ZIP2 in arabidopsis, and IRT1 and 936 

IRT2 in tomato (Wintz et al. 2003; George et al. 2012). The uptake of PS complexes with Cu(II) 937 

is mediated by plasma membrane transporters in the root epidermis like YS1 in maize (Roberts 938 

et al. 2004). In agreement, the roots of tomato and oats grown in Fe-sufficient nutrient 939 

solution were enriched in light isotopes relative to the solution, and the shift was much larger 940 

in tomato (Δ65Curoot-solution -1.43‰) than in oats ( -0.20‰)(Ryan et al. 2013). In both species the 941 

fractionation decreased during Fe-deficiency (-1.05‰ and -0.12‰ respectively) indicating a 942 

greater uptake of Cu(II), probably as Cu(II) complexes with root exudates. The smaller 943 
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fractionation in oats, a strategy II plant, points to a substantial uptake of PS-Cu(II) complexes in 944 

this species.  945 

Further isotope effects have been reported during Cu transport to stem and leaves. In tomato, 946 

the translocation of Cu up the shoots favoured 65Cu (Δ65Cushoot-root up to 1.0‰), suggesting that 947 

Cu(I) was oxidised to Cu(II) before its export to the xylem (Ryan et al. 2013). In agreement, Cu 948 

is mostly present as Cu(II)-NA complexes in the xylem (Curie et al. 2009). By contrast, the 949 

transfer of Cu from the stem to the leaves favoured the light isotopes (Δ65Culeaves-stem up 950 

to -0.37‰), which points to reduction of Cu(II) to Cu(I) during Cu unloading from the xylem 951 

(Ryan et al. 2013). Transporter COPT6 in arabidopsis is expressed in the vasculature of the 952 

shoot and might be involved in Cu(I) import into the leaf symplast (Jung et al. 2012). This 953 

transporter has a high specificity for Cu(I) and requires the previous reduction of Cu(II) to Cu(I). 954 

This reduction is probably catalysed by the reductase FRO3, which is expressed in the 955 

vasculature of the shoot in response to both Fe and Cu deficiency (Mukherjee et al. 2006). In 956 

oats, roots, stems, and leaves had the same isotopic composition (Ryan et al. 2013). This 957 

suggests that strategy II plants might have different translocation mechanisms for Cu not 958 

involving redox conversions, as discussed for Fe in the previous section. The Cu(II) in PS 959 

complexes might be transferred to NA in the xylem with no further redox conversion. In 960 

strategy II plants, Fe could be transported up the shoot as Fe(III)-NA complexes without a 961 

previous reduction step (von Wiren et al. 1999). In rice, the transporter YSL16 can transport 962 

Cu(II)-NA complexes from the xylem directly into the phloem to nourish the developing leaves 963 

(Zheng et al. 2012). Finally, the green leaves of tomato were enriched in light isotopes relative 964 

to the chlorotic ones by -0.30‰, suggesting that the remobilization of Cu to the developing 965 

organs favours the light isotopes, as previously discussed for Fe and Zn (Ryan et al. 2013). 966 

However, in oats the green leaves were enriched in heavy isotopes as compared with the 967 

chlorotic ones by 0.27‰, which points to Cu reduction during remobilization of nutrients in 968 

oats.  969 
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 970 

Nickel 971 

Very little is known about Ni isotopic fractionation in plants, but it is still worth discussing it 972 

here because many metalicollous plants are Zn and Ni hyperaccumulators (Prasad and De 973 

Oliveira Freitas 2003). A survey of Ni isotopic fractionation in plants including a 974 

non-hyperaccumulator (Thlaspi arvense L.), a Ni hyperaccumulator (Alyssum murale Waldst. & 975 

Kit.), and a Ni and Zn hyperaccumulator (N. caerulescens) revealed that plants generally 976 

accumulate light isotopes during uptake (Δ60Niplant-solution -0.90 to -0.21‰, relative to NIST-SRM 977 

986)(Deng et al. 2014). The hyperaccumulators showed a larger fractionation (-0.90 978 

to -0.63‰), which points to a greater permeability of the low-affinity transporters in these 979 

species (Deng et al. 2014). Interestingly, a high supply of Zn (50x10-6 M) suppressed the 980 

observed fractionation in all the three species (-0.11 to -0.07‰). This indicates that Zn and Ni 981 

compete for the same uptake mechanisms. The root to shoot transfer of Ni resulted in further 982 

enrichment of 58Ni in the hyperaccumulators (-0.47 to -0.14‰), while the shoots of the 983 

non-hyperaccumulator accumulated 60Ni relative to the roots (0.25‰). This suggests the 984 

existence of different Ni translocation mechanisms in hyperaccumulators, but these remain 985 

poorly understood. 986 

 987 

Model of Zn isotope discrimination by plants 988 

The isotope data recently published permit to confirm and improve upon the model developed 989 

by Jouvin and co-workers (Jouvin et al. 2012) (Fig. 5), which identified the most likely sources 990 

of isotope discrimination during Zn uptake by plants roots. Zinc in the soil solution will bind 991 

with suitable ligands, such as the low-molecular weight compounds in the root exudates (PS, 992 

OA, etc.) and the cellulose and pectin of the cell walls. Alternatively, Zn might bind covalently 993 

to phosphates in the apoplast as proposed by Fujii and Albarède 2012, or to silicates (Medas et 994 

al. 2015). In the light of the experimental evidence discussed above, these reactions seem to 995 
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favour the accumulation of heavy isotopes in the resulting Zn-complexes relative to free Zn2+. 996 

Unbound Zn2+ can move by diffusion over small distances in the un-stirred layer around the 997 

roots, a kinetically controlled reaction that would favour the lighter isotopes (Criss 1999). The 998 

fractionation of Zn isotopes caused by the joint activity of the plasma membrane transporters 999 

would depend on the concentration and predominant Zn species in the rhizosphere. Jouvin 1000 

and co-workers proposed in their model that low-affinity uptake of Zn2+ mediated by ion 1001 

channels would work towards the accumulation of light isotopes in the cytosol of the root cells 1002 

relative to the apoplast, due to the faster diffusion of the light isotopes, whereas high-affinity 1003 

uptake would favour the heavy isotopes due to the covalent binding of Zn with these 1004 

transporters (Jouvin et al. 2012). This latter notion has been recently challenged by Tang and 1005 

co-workers, who proposed that high-affinity uptake would not fractionate Zn isotopes (Tang et 1006 

al. 2016). They observed a small enrichment of the light isotopes in plants relative to the 1007 

solution which was larger in the non-accumulator T. arvense ( -0.16 to -0.26‰) than in the 1008 

hyperaccumulator N. caerulescens (-0.06 to -0.12‰). They attributed their results to i) 1009 

diffusional fractionation caused by a depletion zone around the roots in hyperaccumulators 1010 

and ii) a mixture of high- and low-affinity transport in non-accumulators. Experiments in 1011 

diatoms have shown that the light isotopes are enriched in the cell relative to the growth 1012 

solution during high-affinity uptake (John et al. 2007). Besides, it is not yet clear if the ZIP 1013 

transporters mainly responsible for Zn2+ uptake at the root function as ion channels or as 1014 

carrier proteins, how Zn binds to these proteins, or how Zn is transported across the 1015 

membrane. In our view, both low- and high-affinity Zn2+ transporters discriminate in favour of 1016 

the light isotopes, but the magnitude of this effect would be smaller during high-affinity 1017 

uptake because the higher efficiency of these transporters would make them less selective of 1018 

the isotopes (as proposed by John et al. 2007). Finally, the uptake of Zn-complexes would not 1019 

further discriminate Zn isotopes because of the large mass of the complexes. However, non-1020 

quantitative uptake of Zn-complex would result in the enrichment of heavy isotopes in plants 1021 
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relative to the soil solution, because the Zn-complexes themselves are isotopically heavier 1022 

than the unbound Zn2+. Efflux transporters would probably carry isotopically light Zn2+ to the 1023 

rhizosphere, but their contribution is likely to be small. In Zn-sufficient environments, the main 1024 

sources of isotope separation at the soil-root interface identified were Zn speciation in the soil 1025 

solution, binding to the cell walls, and low-affinity transport phenomena. In Zn-deficient 1026 

conditions, these were substituted by high-affinity transport phenomena, Zn binding to root 1027 

exudates, and the uptake of the resulting complexes. The two latter are especially relevant in 1028 

Strategy II plants. Finally, Zn isotopic fractionation at the soil-root interface with high Zn supply 1029 

originated mostly from Zn binding to the cell wall. 1030 

Jouvin and co-workers addressed only briefly some of the mechanisms that could lead to 1031 

isotopic fractionation during Zn transfer from the root to the shoot: i) complexation with 1032 

various ligands in the xylem and phloem, especially NA, ii) membrane crossings, iii) diffusion, 1033 

and iv) ion exchange (Jouvin et al. 2012). Here we would like to build on their preliminary 1034 

model and provide a detailed account of all the likely sources of fractionation at work during 1035 

Zn export to the shoots and movement between above-ground organs. Following Zn uptake by 1036 

the root, Zn2+ in the cytosol binds to small weight compounds, most likely NA (Fig. 6). Heavy 1037 

isotopes are thought to accumulate in the resulting Zn-complexes relative to the Zn2+ fraction. 1038 

Unbound Zn2+ can diffuse radially over small distances in the apoplast and the symplast, 1039 

passing from the cytoplasm of one cell to another across the plasmodesmata. Lighter isotopes 1040 

will diffuse faster due to their smaller mass. In our model, we propose that the vacuoles might 1041 

have a key role in determining the isotopic composition of the Zn pool of the cytosol. Excess 1042 

Zn2+ can be removed from the cytosol and stored in the vacuole by means of vacuolar 1043 

transporters, wherefrom it can be remobilized. In this manner, vacuolar transporters control 1044 

the amount of Zn available for export to the aerial parts. The isotopic composition of the 1045 

vacuolar Zn pool is unknown and probably very dynamic, determined by the joint activity of 1046 

the vacuolar transporters and Zn speciation in the vacuole. 1047 
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Zinc will be loaded onto the xylem sap from the cytosol of the adjacent cells, a step mediated 1048 

by membrane transporters that seem to favour the lighter isotopes. Zinc in the xylem sap 1049 

mostly consists of Zn2+, but a substantial amount of Zn-complexes with OA, histidine, NA, and 1050 

PS might be present, especially under low Zn supply (Fig. 7). The xylem sap moves up the stem 1051 

thanks to the mass flow of water driven by transpiration and maintained by the cohesion of 1052 

the water molecules and their adhesion to the cellulose walls. This movement might result in 1053 

the enrichment of light isotopes in the leaves with height, although it is not yet clear how the 1054 

isotopes could be discriminated. Adsorption of Zn2+ onto the cellulose walls of the xylem 1055 

should result in a progressive depletion of the heavier isotopes in the xylem sap relative to the 1056 

root symplast. From the xylem, Zn will enter the leaf symplast via Zn transporters at the 1057 

plasma membrane of the bundle sheath cells, specialized in xylem unloading. Xylem unloading 1058 

might favour the accumulation of lighter isotopes in the leaves relative to the xylem sap.  1059 

In the leaf symplast Zn2+ will bind to various ligands, mainly NA, accumulating heavy isotopes in 1060 

the complexes relative to free Zn2+. Ligand exchange might also occur during Zn unloading 1061 

from the xylem to the symplast, but the isotopic effects derived from it are not known. In 1062 

addition, preferential diffusion of isotopically light Zn2+ in the symplast could lead to further 1063 

discrimination of Zn isotopes during Zn movement in the leaves. The activity of the vacuolar 1064 

transporters and Zn complexation in the cytosol and the vacuole regulate [Zn2+] in the leaf 1065 

symplast. These processes might leave an isotopically lighter pool of Zn2+ available for 1066 

remobilization to developing leaves and grains. Zinc remobilization from source to sink tissues 1067 

involves phloem loading, xylem-to-phloem direct transfer, and phloem unloading of Zn. All 1068 

three processes are thought to be mediated by transporters at the plasma membrane, and 1069 

likely favour the lighter isotopes. 1070 

 1071 

Conclusions 1072 
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The purpose of this review is to provide an overview of Zn isotopic fractionation in plants, in 1073 

relation with our current knowledge of Zn homeostasis. The research debated here clearly 1074 

indicates that Zn uptake, transport to the aerial parts, and transfer to the leaves can induce 1075 

isotopic fractionation relative to the Zn source, and between the plant organs. The isotopic 1076 

effects observed are species-specific and concentration-dependent, and are attributed mainly 1077 

to Zn speciation, compartmentalization, and transporters. In future, isotope ratios may serve 1078 

to elucidate the predominant Zn species taken up by the roots, and found in the various Zn 1079 

pools in the plant. Furthermore, isotope ratios could be used to identify the major processes 1080 

controlling Zn transfer to the aerial parts and to quantify the extent of remobilization from 1081 

source to sink organs, for instance during grain filling. Moreover, analysing the isotope ratios 1082 

of Zn and other metals with similar biochemistry could reveal their competitive interactions. 1083 

Additionally, changes in the patterns of Zn isotopic partitioning in response to environmental 1084 

conditions might be used to study plant physiology and to identify desired traits like Zn 1085 

efficiency or hypertolerance. 1086 

Future efforts must be directed towards the identification of the individual mechanisms 1087 

responsible for the observed isotopic effects. To achieve this objective, research needs to solve 1088 

several knowledge gaps. Probably the most urgent task is to constrain the isotopic effect 1089 

associated with Zn binding to key ligands, like phytosiderophores, cellulose, pectine, OA, NA, 1090 

and phosphates. Besides, the δ66Zn of subcellular compartments, plant tissues, and some 1091 

organs (fruits, seeds, and rhizomes) has not been properly investigated yet, which is 1092 

hampering our understanding of Zn flows in plants. Finally, the influence of many factors 1093 

important for plant nutrition like soil biochemistry, Zn interactions with other nutrients, 1094 

mycorrhizae, root iron plaque, and environmental stressors on the patterns of Zn isotope 1095 

discrimination is still unexplored.  1096 
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