19,274 research outputs found

    Evolving NoSQL Databases Without Downtime

    Full text link
    NoSQL databases like Redis, Cassandra, and MongoDB are increasingly popular because they are flexible, lightweight, and easy to work with. Applications that use these databases will evolve over time, sometimes necessitating (or preferring) a change to the format or organization of the data. The problem we address in this paper is: How can we support the evolution of high-availability applications and their NoSQL data online, without excessive delays or interruptions, even in the presence of backward-incompatible data format changes? We present KVolve, an extension to the popular Redis NoSQL database, as a solution to this problem. KVolve permits a developer to submit an upgrade specification that defines how to transform existing data to the newest version. This transformation is applied lazily as applications interact with the database, thus avoiding long pause times. We demonstrate that KVolve is expressive enough to support substantial practical updates, including format changes to RedisFS, a Redis-backed file system, while imposing essentially no overhead in general use and minimal pause times during updates.Comment: Update to writing/structur

    NOSQL For Storage and Retrieval of Large LiDAR Data Collections

    Get PDF
    Developments in LiDAR technology over the past decades have made LiDAR to become a mature and widely accepted source of geospatial information. This in turn has led to an enormous growth in data volume. The central idea for a file-centric storage of LiDAR point clouds is the observation that large collections of LiDAR data are typically delivered as large collections of files, rather than single files of terabyte size. This split of the dataset, commonly referred to as tiling, was usually done to accommodate a specific processing pipeline. It makes therefore sense to preserve this split. A document oriented NoSQL database can easily emulate this data partitioning, by representing each tile (file) in a separate document. The document stores the metadata of the tile. The actual files are stored in a distributed file system emulated by the NoSQL database. We demonstrate the use of MongoDB a highly scalable document oriented NoSQL database for storing large LiDAR files. MongoDB like any NoSQL database allows for queries on the attributes of the document. As a specialty MongoDB also allows spatial queries. Hence we can perform spatial queries on the bounding boxes of the LiDAR tiles. Inserting and retrieving files on a cloud-based database is compared to native file system and cloud storage transfer speed

    Automatic Migration of Data to NoSQL Databases Using Service Oriented Architecture

    Get PDF
    For the past few years there has been an exponential rise in the use of databases which are not true relational databases. There is no correct definition of such databases but can only be described with a set of common characteristics such absence of a fixed schema, inherent scalability features, high performance, data etc. These databases have come to be known as NoSQL databases. Various companies are seeing the advantages of NoSQL and want to migrate to these databases. But they find it difficult to migrate their data as a lot of study and analysis is required. Each type of database have their own terminology and query language. We propose a novel automated migration model which utilizes the power of service oriented architecture to help these companies easily migrate to NoSQL databases of their choice. We utilize web services which encapsulates few of the most popular NoSQL databases such as MongoDB, Neo4j, Cassandra etc. so that inner details of these databases are hidden yet providing efficient migration of data with little or no knowledge of the inner working of these databases. As proof of concept relational data was migrated successfully from Apache Derby database to MongoDB, Cassandra, Neo4j and DynamoDB, each vendor representing a different type of NoSQL database
    corecore