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ABSTRACT: 

Developments in LiDAR technology over the past decades have made LiDAR to become a mature and widely accepted source of 

geospatial information. This in turn has led to an enormous growth in data volume. The central idea for a file-centric storage of LiDAR 

point clouds is the observation that large collections of LiDAR data are typically delivered as large collections of files, rather than 

single files of terabyte size. This split of the dataset, commonly referred to as tiling, was usually done to accommodate a specific 

processing pipeline. It makes therefore sense to preserve this split. A document oriented NoSQL database can easily emulate this data 

partitioning, by representing each tile (file) in a separate document. The document stores the metadata of the tile. The actual files are 

stored in a distributed file system emulated by the NoSQL database. We demonstrate the use of MongoDB a highly scalable document 

oriented NoSQL database for storing large LiDAR files. MongoDB like any NoSQL database allows for queries on the attributes of 

the document. As a specialty MongoDB also allows spatial queries. Hence we can perform spatial queries on the bounding boxes of 

the LiDAR tiles. Inserting and retrieving files on a cloud-based database is compared to native file system and cloud storage transfer 

speed. 

 

1. INTRODUCTION 

Current workflows for LiDAR point cloud processing often 

involve classic desktop software packages or command line 

interface executables. Many of these programs read one or 

multiple files, perform some degree of processing and write one 

or multiple files. Examples of free or open source software 

collections for LiDAR processing are LASTools (Isenburg and 

Schewchuck, 2007) and some tools from GDAL (“GDAL - 

Geospatial Data Abstraction Library,” 2014) and the future 

PDAL (“PDAL - Point Data Abstraction Library,” 2014). 

Files have proven to be a very reliable and consistent form to 

store and exchange LiDAR data. In particular the ASPRS LAS 

format (“LAS Specification Version 1.3,” 2009) has evolved into 

an industry standard which is supported by every relevant tool. 

For more complex geometric sensor configurations the ASTM 

E57 (Huber, 2011) seems to be the emerging standard. For both 

formats open source, royalty free libraries are available for 

reading and writing. There are now also emerging file standards 

for full-waveform data. File formats sometimes also incorporate 

compression, which very efficiently reduces overall data size. 

Examples for this are LASZip (Isenburg, 2013) and the newly 

launched ESRI Optimized LAS (“Esri Introduces Optimized 

LAS,” 2014). Table 1 shows the compact representation of a 

single point in the LAS file format (Point Type 0). Millions of 

these 20 byte records are stored in a single file. It is possible to 

represent the coordinates with a 4 byte integer, because the 

header of the file stores an offset and a scale factor, which are 

unique for the whole file. In combination this allows a LAS file 

to represent global coordinates in a projected system. 

This established tool chain and exchange mechanism constitutes 

a significant investment both from the data vendors and from a 

data consumer side. Particularly where file formats are made 

open they provide long-term security of investment and provide 

maximum interoperability. It could therefore be highly attractive 

to secure this investment and continue to make best use of it. 

However, it is obvious that the file-centric organization of data is 

problematic for very large collections of LiDAR data as it lacks 

scalability. 

 

2. LIDAR POINT CLOUDS AS BIG DATA 

Developments in LiDAR technology over the past decades have 

made LiDAR to become a mature and widely accepted source of 

geospatial information. This in turn has led to an enormous 

growth in data volume. For airborne LiDAR a typical product 

today which can be bought form a data vendor is a 25 points per 

square meter point cloud stored in a LAS file. This clearly 

exceeds by an order of magnitude a 1 meter DEM raster file, 

which was a GIS standard product not so long ago. Not only did 

the point count per square meter increase but the extent in the 

collection of data has significantly increased as well.  

As an example we can use the official Dutch height network 

(abbreviated AHN), which has recently been made publicly 

available (“AHN - website,” 2014). The Netherlands extend 

across approximately 40,000 square kilometres (including water 

surfaces). At 25 points per square meter or 25,000,000 points per 

Item  Format  Size  Required 

X  long  4 bytes  *  

Y  long  4 bytes  *  

Z  long  4 bytes  *  

Intensity  unsigned short  2 bytes   

Return Number  3 bits (bits 0, 1, 2)  3 bits  *  

Number of Returns  3 bits (bits 3, 4, 5)  3 bits  *  

Scan Direction Flag  1 bit (bit 6)  1 bit  *  

Edge of Flight Line  1 bit (bit 7)  1 bit  *  

Classification  unsigned char  1 byte  *  

Scan Angle Rank  char  1 byte  *  

User Data  unsigned char  1 byte   

Point Source ID  unsigned short  2 bytes  *  

 20 bytes  

Table 1: Compact representation of a single point in the 

LAS file format. 
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square kilometre a full coverage could theoretically result in 25 ∙
106 ∙ 40 ∙ 103 = 1012 or one trillion points. At 20 bytes each this 

truly constitutes big data. The current AHN2 covers less ground 

and provides an estimated 400 billion points (Swart, 2010). It 

delivers more than 1300 tiles of about one square kilometre each 

of filtered terrain-only points at an average density of 10 points 

per square meter. The same volume is available for the residual 

filtered out points (e.g. vegetation and buildings). Together this 

is over a terabyte of compressed data in more than 2500 files.  

Figure 1 shows a single tile of that dataset. It is one of the smallest 

tiles of the dataset. The single tile contains 56,603,846 points and 

extends from 141408.67 to 145000.00 in Easting and 600000.00 

to 601964.94 in Northing. In compressed LAZ format it uses 82 

MB disk space and uncompressed it uses 1.05 GB. 

In terrestrial mobile scanning acquisition rates have now 

surpassed airborne acquisition rates and therefore data volumes 

can become even larger. Organization such as public transport 

authorities are scanning their tunnel systems in regular intervals 

for inspection and monitoring purposes. Repetitive acquisitions 

at centimetre and even millimetre spacing result in large 

collections which accumulate over the years. In order to detect 

changes over several epochs data from previous acquisitions 

needs to be available just as well as the most recent acquisition.  

These examples clearly demonstrate the tough requirements on 

data storage, redundancy, scalability and availability for LiDAR 

storage. Just as clearly traditional file-centric organization of data 

faces some challenges to meet these requirements. However 

databases have dealt with these requirements successfully for 

years. 

3. POINT CLOUDS AND DATABASES 

The simplest approach to store LiDAR point clouds in a relational 

database, would be to store every point in a row of a three column 

table where the columns represent X, Y and Z. Further columns 

could represent additional attributes (see Table 1). As (Ramsey, 

2013) has mentioned classic relational databases are not cable to 

store hundreds of billions of rows for performance reasons. 

However, this would be necessary as follows from the examples 

above. Classic databases can maybe store millions of rows.  

There have been nevertheless efforts to approach this. The 

solution is typically to collect a larger set of points and store them 

as a single object in a row. The two major examples for this are 

Oracle Spatial and PostGIS. PostGIS refers to this concept as 

point cloud patches (PcPatch). The obvious disadvantage is that 

to access the actual geometry, i.e. the individual points you need 

to unpack these patches (PC_Explode) and casted to classic GIS 

points, which is an additional operation. For PostGIS the 

recommendation is to use patches with a maximum of 600 points, 

i.e. rather small patches. 

Google’s Bigtable (Chang et al., 2008) finally promised to break 

the storage boundaries of traditional databases. According to the 

authors Bigtable was designed as a distributed database system 

to hold “petabytes of data across thousands of commodity 

servers”. The number of rows in a database is virtually unlimited. 

A Bigtable inspired open source distributed database system 

HBase was used as a storage backend for Megatree (“Megatree - 

ROS Wiki,” 2008). Megatree is an octree like spatial data 

structure to hold billions of points. It is now maintained by 

hiDOF (“hiDOF,” 2014). 

Document oriented NoSQL (Not only SQL) databases depart 

from the idea of storing data in tables. A significant portion of 

NoSQL databases (mongodb, couchbase, clusterpoint …) are 

indeed document oriented (Jing Han et al., 2011). If one was to 

draw a comparison to relational databases documents were the 

equivalent to rows in a table. A collection of documents then 

makes up the table. The decisive difference is that the documents 

in a collection need not follow the same schema. They can 

contain different attributes while the database is still able to query 

across all documents in a collection. These NoSQL databases are 

highly scalable and are one of the most significant tools for Big 

Data problems. We introduce a possible solution for LiDAR 

storage using NoSQL that follows a file-centric approach in the 

following section. We had first suggested the use of document 

oriented NoSQL for LiDAR storage in (Boehm, 2014). (Wang 

and Hu, 2014) have proposed a similar approach focusing on 

concurrency.  

 

4. NOSQL DATABASE FOR FILE-CENTRIC STORAGE  

The central idea for a file-centric storage of LiDAR point clouds 

is the observation that large collections of LiDAR data are 

typically delivered as large collections of files, rather than single 

files of terabyte size. This split of the dataset, commonly referred 

to as tiling, was usually done to accommodate a specific 

processing pipeline. It makes therefore sense to preserve this 

split. 

A document oriented NoSQL database can easily emulate this 

data partitioning, by representing each tile (file) in a separate 

document. The document stores the metadata of the tile. Different 

file formats could be accommodated by different attributes in the 

document, as NoSQL does not enforce a strict schemata. The 

actual files cannot efficiently be stored inside a document as they 

are too large. A different mechanism is needed. 

We choose to use MongoDB a highly scalable document oriented 

NoSQL database. MongoDB offers GridFS which emulates a 

distributed file system. This brings the possibility to store large 

LiDAR files over several servers and thus ensures scalability. 

GridFS is a database convention to enable file storage. A file is 

split up into smaller chunks which are stored in separate 

documents linked via a common id. An index keeps track of the 

chunks and stores the associated file attributes. The idea to store 

large geospatial collections in a distributed file system is not 

dissimilar to Spatial Hadoop which uses HDFS for this purpose 

(Eldawy and Mokbel, 2013). Figure 2 gives an overview of the 

proposed architecture of the database. Figure 3 details the 

attributes that are stored in a document. Note that this is not meant 

to be a fixed schema, it is rather a minimal set of information 

which can be easily extended. 

 

 

Figure 1: Visualization of a single point cloud tile stored 

in a LAS file. The colours indicate height. 
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Figure 2: Overview of the three collections that make up 

the database for big LiDAR data 

 

{ 

  type:      <file type, e.g. LAS>,  

  version:   <version of file format>,  

  id:        <project id>,  

  date:      <acquisition date>,  

  loc:       <location for spatial index>, 

  filename:  <original file name>,  

  gridfs_id: <pointer to gridfs file> 

} 

Figure 3: Attributes of a document stored in the collection 

representing the metadata of a tile. 

 

5. IMPLEMENTATION DETAILS 

We start from the data provided by the LAS files. The 

information in their headers provides the crucial metadata for 

later queries. We use liblas (Butler et al., 2010) and its python 

bindings to parse the files. While we show all code excerpts in 

python for brevity there is nothing language specific in the data 

organization. The following python code excerpt shows an 

example of metadata that can be extracted. In this example we 

use the file’s signature, the version of LAS, the project ID and 

the date to describe the file’s content. We also extract the 

minimum and maximum of coordinate values to later construct 

the bounding box. 

# open LAS/LAZ file 

file_name = 'g01cz1.laz' 

f = file.File(file_name, mode='r') 

header = f.header 

# read meta data from header 

s = header.file_signature 

v = header.version 

i = header.project_id 

d = header.date 

min = header.min 

max = header.max 

 

Many of the NoSQL databases target web and mobile 

development. Hence their geospatial indices are often restricted 

to GPS coordinates, which are most commonly represented in 

WGS84. LiDAR data on the other hand is usually locally 

projected. Therefore any coordinates extracted from a LiDAR 

file need to me transformed to the correct coordinate system 

supported by the database. This is a very common operation in 

GIS. We use the PROJ library for this purpose. Again we provide 

some sample code which shows the transformation from the 

original coordinate systems (Amersfoort / RD New to WGS84 in 

this case). As you can see we only transform the bounding box of 

the data. The actual LiDAR data remains untouched. 

 

p1 = Proj('+proj=sterea 

           +lat_0=52.15616055555555 

           +lon_0=5.38763888888889 

           +k=0.9999079 +x_0=155000  

           +y_0=463000 +ellps=Bessel 

           +units=m +no_defs') 

p2 = Proj('+proj=longlat +ellps=WGS84 

           +datum=WGS84 +no_defs') 

min = transform(p1, p2, min[0], min[1]) 

max = transform(p1, p2, max[0], max[1]) 

loc = {"type": "Polygon",  

       "coordinates" :  

          [[[min[0], min[1]],  

            [max[0], min[1]],  

            [max[0], max[1]], 

            [min[0], max[1]],  

            [min[0], min[1]]] 

          ] 

      } 

 

For all of the above the actual data content of the LiDAR file 

never gets analysed. This is important to avoid unnecessary 

overhead. The file gets stored in full and unaltered into the 

database. As mentioned above MongoDB provides a distributed 

file system for this called GridFS. We show in following code 

how the compressed LAS file gets stored into the database. We 

store a pointer to the file (a file ID) to connect it to the metadata 

in the next step.  

We have now all the information in place to generate a document 

which combines the meta data of the LiDAR file, the geometric 

key and a pointer to the actual data content in the database (see 

Figure 3). This NoSQL document represents one tile of the 

collection of LiDAR data. The document is represented as a 

BSON object. This representation is very similar to the well-

known JSON representation, but optimized for storage. The 

actual creation of the document and its storage are very simple. 

The next code sample shows all that is required. 

Database

collections

big_lidar

tile metadata

fs.files

file attributes

fs.chunks

file chunks
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# open mongodb big_lidar database 

client = MongoClient() 

db = client.test_database 

big_lidar = db.big_lidar 

# add file to GridFS 

file = open(file_name, 'rb') 

gfs = gridfs.GridFS(db) 

gf = gfs.put(file, filename = file_name) 

file.close() 

# add one tile to big_lidar database 

tile = {"type": s, "version": v, "id": i,  

        "date": d, "loc": loc, 

        "filename": file_name,  

        "gridfs_id": gf} 

big_lidar.insert(tile) 

 

Figure 4 shows a graphical result of the operation. It is the 

visualization of all stored tiles’ bounding boxes on top of a map 

using a desktop GIS system (Quantum GIS). Since the bounding 

boxes are stored as BSON objects, it is straight forward to export 

them as GeoJSON files. 

We show a simple status report and an aggregation on the 

database in the MongoDB console. This confirms the successful 

storage of 1351 tiles and a total of 447728000747 points in the 

database. 

 

> db.big_lidar.stats() 

{ 

        "ns" : "AHN2.big_lidar", 

        "count" : 1351, 

        "size" : 670096, 

        "avgObjSize" : 496, 

        "storageSize" : 696320, 

        … 

} 

 

> db.big_lidar.aggregate( [ { $group : { _id: 

null, total: { $sum : "$num_points" } } } ] ) 

 

{ "_id" : null, "total" : 

NumberLong("447728000747") } 

 

6. SPATIAL QUERY 

MongoDB like any NoSQL database allows for queries on the 

attributes of the document. When an index is created on a certain 

attribute queries are accelerated. As a specialty MongoDB allows 

spatial indices and spatial queries. Hence we can perform spatial 

 

 

Figure 4: Bounding Polygons of the tiles of the AHN2 dataset displayed over a map. 
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queries on the bounding boxes of the LiDAR tiles. We show a 

very simple example of an interactive query on the Python 

console. The query uses a polygon to describe the search area. 

The database returns the tile metadata including the GridFS 

index. Using the GridFS index the actual point cloud data can be 

read from the database. It is simply the LiDAR point cloud file 

that was previously put into the database. It is important to note 

that no conversion or alteration of the files was done.  

>>> tiles=list(big_lidar.find({ "loc" :  

    { "$geoWithin" : { "$geometry" :  

     {"type": "Polygon", "coordinates" :  

      [[[5.1, 53.3], [5.5, 53.3],  

        [5.5, 53.5], [5.1, 53.5],  

        [5.1, 53.3] ]]}}} 

    })) 

>>> len(tiles) 

4 

>>> tiles[0]['filename'] 

u'g01cz1.laz' 

>>> gf_id = tiles[0]['gridfs_id'] 

>>> gf = gfs.get(gf_id) 

>>> las_file = open('export_' + file_name,  

                    'wb') 

>>> las_file.write(gf.read()) 

>>> las_file.close() 

 

In Figure 5 we give the visualization representation of the query 

operation. Four tiles were retrieved by the spatial query. In the 

example we attach the filename as attributes and plot the 

bounding boxes over a base map using the filenames as labels. 

The leftmost tile corresponds to the point cloud visualized in 

Figure 1. 

 

7. TIMING EXPERIMENTS 

As we move file-centric storage from the operating systems’ file 

systems to a database, the performance of the transfer operation 

with respect to the time they need to complete is of interest. We 

have therefore performed some timing experiments for simple 

storage and retrieval of a single tile of about 40 MB. The 

experiments were performed on an Amazon EC2, a well-known 

high-performance computing environment (Akioka and 

Muraoka, 2010). We used an EC2 small instance in all 

experiments. We separated local transfer from remote transfer.  

Local Transfer is in-between the operating systems’ file system 

and the database on the same machine. Remote transfer occurs 

between the EC2 instance and a machine outside the amazon 

cluster connected via the internet. To better assess the measured 

times we give comparisons to alternative transfer methods. We 

compare local transfer to the timing measured for direct file 

system transfer (file-copy). Remote transfer is compared to 

transfer with Dropbox, a leading personal cloud storage service 

(Drago et al., 2012).  

Figure 6 shows the results of local transfer. We can see that there 

is some overhead compared to file system copy. This is 

particularly the case for storing files (put), less so for retrieving 

them (get). Figure 7 shows the timings for remote transfer. The 

database performs at least on par with a common cloud storage 

system. This obviously depends on the internet connection. All 

experiments were performed on the same computers at nearly the 

same time.  

 

Figure 6: Transfer times for local transfer. 

 

 

Figure 7: Transfer times for remote transfer. 
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Figure 5: Example result of a spatial query visualized using 

QGIS. In the top image the red box represents the search 

polygon. The bottom image shows the tiles that are 

completely within the search polygon. The MongoDB spatial 

query delivered four tiles on the coast of the Netherlands. 
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8. CONCLUSIONS 

We have presented a file-centric storage and retrieval system for 

large collections of LiDAR point cloud tiles based on scalable 

NoSQL technology. The system is capable of storing large 

collections of point clouds. Using a document-based NoSQL 

database allows retaining a file-centric workflow, which makes 

many existing tools accessible. The suggested system supports 

spatial queries on the tile geometry. Inserting and retrieving files 

locally has some overhead when compared to file system 

operation. Remote transfer is at par with popular cloud storage.  

Building the system on MongoDB, a proven NoSQL database, 

brings in a range of advantageous features such as  

 Scalability 

 Replication 

 High Availability 

 Auto-Sharding  

MongoDB supports Map-Reduce internally for database queries. 

However it is also known to work with external Map-Reduce 

frameworks such as Hadoop. A special adapter to access 

MongoDB from Hadoop is provided. This offers very interesting 

future opportunities to combine Map-Reduce based processing 

with NoSQL spatial queries. 
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