3,737 research outputs found

    A New Image Quality Database for Multiple Industrial Processes

    Full text link
    Recent years have witnessed a broader range of applications of image processing technologies in multiple industrial processes, such as smoke detection, security monitoring, and workpiece inspection. Different kinds of distortion types and levels must be introduced into an image during the processes of acquisition, compression, transmission, storage, and display, which might heavily degrade the image quality and thus strongly reduce the final display effect and clarity. To verify the reliability of existing image quality assessment methods, we establish a new industrial process image database (IPID), which contains 3000 distorted images generated by applying different levels of distortion types to each of the 50 source images. We conduct the subjective test on the aforementioned 3000 images to collect their subjective quality ratings in a well-suited laboratory environment. Finally, we perform comparison experiments on IPID database to investigate the performance of some objective image quality assessment algorithms. The experimental results show that the state-of-the-art image quality assessment methods have difficulty in predicting the quality of images that contain multiple distortion types

    How is Gaze Influenced by Image Transformations? Dataset and Model

    Full text link
    Data size is the bottleneck for developing deep saliency models, because collecting eye-movement data is very time consuming and expensive. Most of current studies on human attention and saliency modeling have used high quality stereotype stimuli. In real world, however, captured images undergo various types of transformations. Can we use these transformations to augment existing saliency datasets? Here, we first create a novel saliency dataset including fixations of 10 observers over 1900 images degraded by 19 types of transformations. Second, by analyzing eye movements, we find that observers look at different locations over transformed versus original images. Third, we utilize the new data over transformed images, called data augmentation transformation (DAT), to train deep saliency models. We find that label preserving DATs with negligible impact on human gaze boost saliency prediction, whereas some other DATs that severely impact human gaze degrade the performance. These label preserving valid augmentation transformations provide a solution to enlarge existing saliency datasets. Finally, we introduce a novel saliency model based on generative adversarial network (dubbed GazeGAN). A modified UNet is proposed as the generator of the GazeGAN, which combines classic skip connections with a novel center-surround connection (CSC), in order to leverage multi level features. We also propose a histogram loss based on Alternative Chi Square Distance (ACS HistLoss) to refine the saliency map in terms of luminance distribution. Extensive experiments and comparisons over 3 datasets indicate that GazeGAN achieves the best performance in terms of popular saliency evaluation metrics, and is more robust to various perturbations. Our code and data are available at: https://github.com/CZHQuality/Sal-CFS-GAN

    Multimodal enhancement-fusion technique for natural images.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.This dissertation presents a multimodal enhancement-fusion (MEF) technique for natural images. The MEF is expected to contribute value to machine vision applications and personal image collections for the human user. Image enhancement techniques and the metrics that are used to assess their performance are prolific, and each is usually optimised for a specific objective. The MEF proposes a framework that adaptively fuses multiple enhancement objectives into a seamless pipeline. Given a segmented input image and a set of enhancement methods, the MEF applies all the enhancers to the image in parallel. The most appropriate enhancement in each image segment is identified, and finally, the differentially enhanced segments are seamlessly fused. To begin with, this dissertation studies targeted contrast enhancement methods and performance metrics that can be utilised in the proposed MEF. It addresses a selection of objective assessment metrics for contrast-enhanced images and determines their relationship with the subjective assessment of human visual systems. This is to identify which objective metrics best approximate human assessment and may therefore be used as an effective replacement for tedious human assessment surveys. A subsequent human visual assessment survey is conducted on the same dataset to ascertain image quality as perceived by a human observer. The interrelated concepts of naturalness and detail were found to be key motivators of human visual assessment. Findings show that when assessing the quality or accuracy of these methods, no single quantitative metric correlates well with human perception of naturalness and detail, however, a combination of two or more metrics may be used to approximate the complex human visual response. Thereafter, this dissertation proposes the multimodal enhancer that adaptively selects the optimal enhancer for each image segment. MEF focusses on improving chromatic irregularities such as poor contrast distribution. It deploys a concurrent enhancement pathway that subjects an image to multiple image enhancers in parallel, followed by a fusion algorithm that creates a composite image that combines the strengths of each enhancement path. The study develops a framework for parallel image enhancement, followed by parallel image assessment and selection, leading to final merging of selected regions from the enhanced set. The output combines desirable attributes from each enhancement pathway to produce a result that is superior to each path taken alone. The study showed that the proposed MEF technique performs well for most image types. MEF is subjectively favourable to a human panel and achieves better performance for objective image quality assessment compared to other enhancement methods

    Extended object reconstruction in adaptive-optics imaging: the multiresolution approach

    Full text link
    We propose the application of multiresolution transforms, such as wavelets (WT) and curvelets (CT), to the reconstruction of images of extended objects that have been acquired with adaptive optics (AO) systems. Such multichannel approaches normally make use of probabilistic tools in order to distinguish significant structures from noise and reconstruction residuals. Furthermore, we aim to check the historical assumption that image-reconstruction algorithms using static PSFs are not suitable for AO imaging. We convolve an image of Saturn taken with the Hubble Space Telescope (HST) with AO PSFs from the 5-m Hale telescope at the Palomar Observatory and add both shot and readout noise. Subsequently, we apply different approaches to the blurred and noisy data in order to recover the original object. The approaches include multi-frame blind deconvolution (with the algorithm IDAC), myopic deconvolution with regularization (with MISTRAL) and wavelets- or curvelets-based static PSF deconvolution (AWMLE and ACMLE algorithms). We used the mean squared error (MSE) and the structural similarity index (SSIM) to compare the results. We discuss the strengths and weaknesses of the two metrics. We found that CT produces better results than WT, as measured in terms of MSE and SSIM. Multichannel deconvolution with a static PSF produces results which are generally better than the results obtained with the myopic/blind approaches (for the images we tested) thus showing that the ability of a method to suppress the noise and to track the underlying iterative process is just as critical as the capability of the myopic/blind approaches to update the PSF.Comment: In revision in Astronomy & Astrophysics. 19 pages, 13 figure
    • …
    corecore