4,312 research outputs found

    Average-Case Complexity

    Full text link
    We survey the average-case complexity of problems in NP. We discuss various notions of good-on-average algorithms, and present completeness results due to Impagliazzo and Levin. Such completeness results establish the fact that if a certain specific (but somewhat artificial) NP problem is easy-on-average with respect to the uniform distribution, then all problems in NP are easy-on-average with respect to all samplable distributions. Applying the theory to natural distributional problems remain an outstanding open question. We review some natural distributional problems whose average-case complexity is of particular interest and that do not yet fit into this theory. A major open question whether the existence of hard-on-average problems in NP can be based on the P≠\neqNP assumption or on related worst-case assumptions. We review negative results showing that certain proof techniques cannot prove such a result. While the relation between worst-case and average-case complexity for general NP problems remains open, there has been progress in understanding the relation between different ``degrees'' of average-case complexity. We discuss some of these ``hardness amplification'' results

    Heuristic algorithms for the Longest Filled Common Subsequence Problem

    Full text link
    At CPM 2017, Castelli et al. define and study a new variant of the Longest Common Subsequence Problem, termed the Longest Filled Common Subsequence Problem (LFCS). For the LFCS problem, the input consists of two strings AA and BB and a multiset of characters M\mathcal{M}. The goal is to insert the characters from M\mathcal{M} into the string BB, thus obtaining a new string B∗B^*, such that the Longest Common Subsequence (LCS) between AA and B∗B^* is maximized. Casteli et al. show that the problem is NP-hard and provide a 3/5-approximation algorithm for the problem. In this paper we study the problem from the experimental point of view. We introduce, implement and test new heuristic algorithms and compare them with the approximation algorithm of Casteli et al. Moreover, we introduce an Integer Linear Program (ILP) model for the problem and we use the state of the art ILP solver, Gurobi, to obtain exact solution for moderate sized instances.Comment: Accepted and presented as a proceedings paper at SYNASC 201

    The problem with the SURF scheme

    Get PDF
    There is a serious problem with one of the assumptions made in the security proof of the SURF scheme. This problem turns out to be easy in the regime of parameters needed for the SURF scheme to work. We give afterwards the old version of the paper for the reader's convenience.Comment: Warning : we found a serious problem in the security proof of the SURF scheme. We explain this problem here and give the old version of the paper afterward

    Cryptography from tensor problems

    Get PDF
    We describe a new proposal for a trap-door one-way function. The new proposal belongs to the "multivariate quadratic" family but the trap-door is different from existing methods, and is simpler

    Partition strategies for incremental Mini-Bucket

    Get PDF
    Los modelos en grafo probabilísticos, tales como los campos aleatorios de Markov y las redes bayesianas, ofrecen poderosos marcos de trabajo para la representación de conocimiento y el razonamiento en modelos con gran número de variables. Sin embargo, los problemas de inferencia exacta en modelos de grafos son NP-hard en general, lo que ha causado que se produzca bastante interés en métodos de inferencia aproximados. El mini-bucket incremental es un marco de trabajo para inferencia aproximada que produce como resultado límites aproximados inferior y superior de la función de partición exacta, a base de -empezando a partir de un modelo con todos los constraints relajados, es decir, con las regiones más pequeñas posibleincrementalmente añadir regiones más grandes a la aproximación. Los métodos de inferencia aproximada que existen actualmente producen límites superiores ajustados de la función de partición, pero los límites inferiores suelen ser demasiado imprecisos o incluso triviales. El objetivo de este proyecto es investigar estrategias de partición que mejoren los límites inferiores obtenidos con el algoritmo de mini-bucket, trabajando dentro del marco de trabajo de mini-bucket incremental. Empezamos a partir de la idea de que creemos que debería ser beneficioso razonar conjuntamente con las variables de un modelo que tienen una alta correlación, y desarrollamos una estrategia para la selección de regiones basada en esa idea. Posteriormente, implementamos nuestra estrategia y exploramos formas de mejorarla, y finalmente medimos los resultados obtenidos usando nuestra estrategia y los comparamos con varios métodos de referencia. Nuestros resultados indican que nuestra estrategia obtiene límites inferiores más ajustados que nuestros dos métodos de referencia. También consideramos y descartamos dos posibles hipótesis que podrían explicar esta mejora.Els models en graf probabilístics, com bé els camps aleatoris de Markov i les xarxes bayesianes, ofereixen poderosos marcs de treball per la representació del coneixement i el raonament en models amb grans quantitats de variables. Tanmateix, els problemes d’inferència exacta en models de grafs son NP-hard en general, el qual ha provocat que es produeixi bastant d’interès en mètodes d’inferència aproximats. El mini-bucket incremental es un marc de treball per a l’inferència aproximada que produeix com a resultat límits aproximats inferior i superior de la funció de partició exacta que funciona començant a partir d’un model al qual se li han relaxat tots els constraints -és a dir, un model amb les regions més petites possibles- i anar afegint a l’aproximació regions incrementalment més grans. Els mètodes d’inferència aproximada que existeixen actualment produeixen límits superiors ajustats de la funció de partició. Tanmateix, els límits inferiors acostumen a ser massa imprecisos o fins aviat trivials. El objectiu d’aquest projecte es recercar estratègies de partició que millorin els límits inferiors obtinguts amb l’algorisme de mini-bucket, treballant dins del marc de treball del mini-bucket incremental. La nostra idea de partida pel projecte es que creiem que hauria de ser beneficiós per la qualitat de l’aproximació raonar conjuntament amb les variables del model que tenen una alta correlació entre elles, i desenvolupem una estratègia per a la selecció de regions basada en aquesta idea. Posteriorment, implementem la nostra estratègia i explorem formes de millorar-la, i finalment mesurem els resultats obtinguts amb la nostra estratègia i els comparem a diversos mètodes de referència. Els nostres resultats indiquen que la nostra estratègia obté límits inferiors més ajustats que els nostres dos mètodes de referència. També considerem i descartem dues possibles hipòtesis que podrien explicar aquesta millora.Probabilistic graphical models such as Markov random fields and Bayesian networks provide powerful frameworks for knowledge representation and reasoning over models with large numbers of variables. Unfortunately, exact inference problems on graphical models are generally NP-hard, which has led to signifi- cant interest in approximate inference algorithms. Incremental mini-bucket is a framework for approximate inference that provides upper and lower bounds on the exact partition function by, starting from a model with completely relaxed constraints, i.e. with the smallest possible regions, incrementally adding larger regions to the approximation. Current approximate inference algorithms provide tight upper bounds on the exact partition function but loose or trivial lower bounds. This project focuses on researching partitioning strategies that improve the lower bounds obtained with mini-bucket elimination, working within the framework of incremental mini-bucket. We start from the idea that variables that are highly correlated should be reasoned about together, and we develop a strategy for region selection based on that idea. We implement the strategy and explore ways to improve it, and finally we measure the results obtained using the strategy and compare them to several baselines. We find that our strategy performs better than both of our baselines. We also rule out several possible explanations for the improvement

    Pseudorandomness and the Minimum Circuit Size Problem

    Get PDF

    Statistical Zero Knowledge and quantum one-way functions

    Get PDF
    One-way functions are a very important notion in the field of classical cryptography. Most examples of such functions, including factoring, discrete log or the RSA function, can be, however, inverted with the help of a quantum computer. In this paper, we study one-way functions that are hard to invert even by a quantum adversary and describe a set of problems which are good such candidates. These problems include Graph Non-Isomorphism, approximate Closest Lattice Vector and Group Non-Membership. More generally, we show that any hard instance of Circuit Quantum Sampling gives rise to a quantum one-way function. By the work of Aharonov and Ta-Shma, this implies that any language in Statistical Zero Knowledge which is hard-on-average for quantum computers, leads to a quantum one-way function. Moreover, extending the result of Impagliazzo and Luby to the quantum setting, we prove that quantum distributionally one-way functions are equivalent to quantum one-way functions. Last, we explore the connections between quantum one-way functions and the complexity class QMA and show that, similarly to the classical case, if any of the above candidate problems is QMA-complete then the existence of quantum one-way functions leads to the separation of QMA and AvgBQP.Comment: 20 pages; Computational Complexity, Cryptography and Quantum Physics; Published version, main results unchanged, presentation improve
    • …
    corecore