166,226 research outputs found

    X-ray photoelectron spectroscopy investigation of nanoporous NiO electrodes sensitized with Erythrosine B

    Get PDF
    Nanoporous NiO thin films were prepared onto FTO glass substrates by means of screen-printing and were sensitized with Erythrosine B (EryB) dye. The obtained material was electrochemically treated and characterized with ex-situ X-ray photoelectron spectroscopy in order to gain information beneficial to the application of sensitized NiO as photocathodes of p-type dye-sensitized solar cells (p-DSCs). In particular, EryB-sensitized NiO films underwent a series of electrochemical treatments in LiClO4/Acetonitrile (ACN) electrolyte devised so as to simulate possible conditions the electrode might encounter during operation in the photoelectrochemical cell. Upon potential-cycling in a range where the two NiO faradic events Ni(II)→Ni(III) and Ni(III)→Ni(IV) occur, X-ray photoelectron spectroscopy revealed that Erythrosine B dye experiences a partial detachment from the NiO surface. This detachment seems to be paralleled by the formation of stable (Ni)+(ClO4)- couples. Overall, the EryB dye displayed an acceptable electrochemical stability onto the surface of NiO electrode up to 50 cyclic voltammetries in the range -0.27÷+1.13V vs. Ag/AgCl. These results are useful for the evaluation of electrochemical stability of the dye when this is immobilized onto an electrode surface and are beneficial for a better comprehension of the degradation phenomena operating in real photoconversion device. © 2017 Elsevier B.V

    Magneto-Coulomb Oscillation in Ferromagnetic Single Electron Transistors

    Full text link
    The mechanism of the magneto-Coulomb oscillation in ferromagnetic single electron transistors (SET's) is theoretically considered. Variations in the chemical potentials of the conduction electrons in the ferromagnetic island electrode and the ferromagnetic lead electrodes in magnetic fields cause changes in the free energy of the island electrode of the SET. Experimental results of the magneto-Coulomb oscillation in a Ni/Co/Ni ferromagnetic SET are presented and discussed. Possible applications of this phenomenon are also discussed.Comment: 24 pages Latex, 5 figures in GIF files, style files included. Revised version: some errors are corrected and further discussions are added. To be published in J. Phys. Soc. Jpn. Vol.67 (1998) No.

    Voltage-controlled inversion of tunnel magnetoresistance in epitaxial Nickel/Graphene/MgO/Cobalt junctions

    Get PDF
    We report on the fabrication and characterization of vertical spin-valve structures using a thick epitaxial MgO barrier as spacer layer and a graphene-passivated Ni film as bottom ferromagnetic electrode. The devices show robust and scalable tunnel magnetoresistance, with several changes of sign upon varying the applied bias voltage. These findings are explained by a model of phonon-assisted transport mechanisms that relies on the peculiarity of the band structure and spin density of states at the hybrid graphene|Ni interface

    Recent advances in Ni-H2 technology at NASA Lewis Research Center

    Get PDF
    The NASA Lewis Research Center has concentrated its efforts on advancing the Ni-H2 system technology for low Earth orbit applications. Component technology as well as the design principles were studied in an effort to understand the system behavior and failure mechanisms in order to increase performance and extend cycle life. The design principles were previously addressed. The component development is discussed, in particular the separator and nickel electrode and how these efforts will advance the Ni-H2 system technology

    Destructive physical analysis results of Ni/H2 cells cycled in LEO regime

    Get PDF
    Six 48-Ah individual pressure vessel (IPV) Ni/H2 cells containing 26 and 31 percent KOH electrolyte were life cycle tested in low Earth orbit. All three cells containing 31 percent KOH failed (3729, 4165, and 11,355 cycles), while those with 26 percent KOH were cycled over 14,000 times in the continuing test. Destructive physical analysis (DPA) of the failed cells included visual inspections, measurements of electrode thickness, scanning electron microscopy, chemical analysis, and measurements of nickel electrode capacity in an electrolyte flooded cell. The cycling failure was due to a decrease of nickel electrode capacity. As possible causes of the capacity decrease, researchers observed electrode expansion, rupture, and corrosion of the nickel electrode substrate, active material redistribution, and accumulation of electrochemically undischargeable active material with cycling

    Basic statistical analyses of candidate nickel-hydrogen cells for the Space Station Freedom

    Get PDF
    Nickel-Hydrogen (Ni/H2) secondary batteries will be implemented as a power source for the Space Station Freedom as well as for other NASA missions. Consequently, characterization tests of Ni/H2 cells from Eagle-Picher, Whittaker-Yardney, and Hughes were completed at the NASA Lewis Research Center. Watt-hour efficiencies of each Ni/H2 cell were measured for regulated charge and discharge cycles as a function of temperature, charge rate, discharge rate, and state of charge. Temperatures ranged from -5 C to 30 C, charge rates ranged from C/10 to 1C, discharge rates ranged from C/10 to 2C, and states of charge ranged from 20 percent to 100 percent. Results from regression analyses and analyses of mean watt-hour efficiencies demonstrated that overall performance was best at temperatures between 10 C and 20 C while the discharge rate correlated most strongly with watt-hour efficiency. In general, the cell with back-to-back electrode arrangement, single stack, 26 percent KOH, and serrated zircar separator and the cell with a recirculating electrode arrangement, unit stack, 31 percent KOH, zircar separators performed best

    Transport Properties of Ni, Co, Fe, Mn Doped Cu0.01Bi2Te2.7Se0.3 for Thermoelectric Device Applications

    Full text link
    Bi2Te3 based thermoelectric devices typically use a nickel layer as a diffusion barrier to block the diffusion of solder or copper atoms from the electrode into the thermoelectric material. Previous studies have shown degradation in the efficiency of these thermoelectric devices may be due to the diffusion of the barrier layer into the thermoelectric material. In this work Ni, Co, Fe, and Mn are intentionally doped into Cu0.01Bi2Te2.7Se0.3 in order to understand their effects on the thermoelectric material. Thermoelectric transport properties including the Seebeck coefficient, thermal conductivity, electrical resistivity, carrier concentration, and carrier mobility of Cu0.01Bi2Te2.7Se0.3 doped with 2 atomic percent M (M=Ni, Co, Fe, Mn) as Cu0.01Bi2Te2.7Se0.3M0.02, are studied in a temperature range of 5-525 K

    Study of nickel hydroxide electrodes. 2: Oxidation products of nickel (2) hydroxides

    Get PDF
    Pure phases of some oxidized Ni oxides were prepared galvanimetrically with the Ni(2) hydroxide electrode of an alkaline battery. The crystallographic data of these phases, their chemical behavior, and conditions of transition were studied

    Electrochemistry of uranium in molten LiF–CaF2

    Get PDF
    This article is focused on the electrochemical behaviour of U ions in molten LiF–CaF2 (79–21 wt.%) eutectic. On aWelectrode, U(III) is reduced in one step to U metal and U(III) can be also oxidised to U(IV). Both systems were studied by cyclic and square wave voltammetry. Reversibility of both systems for both techniques was verified and number of exchanged electrons was determined, as well as diffusion coefficients for U(III) and U(IV). The results are in a good agreement with previous studies. On a Ni electrode,the depolarisation effect due to intermetallic compounds formation was observed. Electrorefining of U metal in a melt containing U and Gd ions was carried out using a reactive Ni electrode with promising results
    corecore