14,652 research outputs found

    Multi-path Summation for Decoding 2D Topological Codes

    Get PDF
    Fault tolerance is a prerequisite for scalable quantum computing. Architectures based on 2D topological codes are effective for near-term implementations of fault tolerance. To obtain high performance with these architectures, we require a decoder which can adapt to the wide variety of error models present in experiments. The typical approach to the problem of decoding the surface code is to reduce it to minimum-weight perfect matching in a way that provides a suboptimal threshold error rate, and is specialized to correct a specific error model. Recently, optimal threshold error rates for a variety of error models have been obtained by methods which do not use minimum-weight perfect matching, showing that such thresholds can be achieved in polynomial time. It is an open question whether these results can also be achieved by minimum-weight perfect matching. In this work, we use belief propagation and a novel algorithm for producing edge weights to increase the utility of minimum-weight perfect matching for decoding surface codes. This allows us to correct depolarizing errors using the rotated surface code, obtaining a threshold of 17.76±0.02%17.76 \pm 0.02 \%. This is larger than the threshold achieved by previous matching-based decoders (14.88±0.02%14.88 \pm 0.02 \%), though still below the known upper bound of ∼18.9%\sim 18.9 \%.Comment: 19 pages, 13 figures, published in Quantum, available at https://quantum-journal.org/papers/q-2018-10-19-102

    Density-matrix simulation of small surface codes under current and projected experimental noise

    Get PDF
    We present a full density-matrix simulation of the quantum memory and computing performance of the distance-3 logical qubit Surface-17, following a recently proposed quantum circuit and using experimental error parameters for transmon qubits in a planar circuit QED architecture. We use this simulation to optimize components of the QEC scheme (e.g., trading off stabilizer measurement infidelity for reduced cycle time) and to investigate the benefits of feedback harnessing the fundamental asymmetry of relaxation-dominated error in the constituent transmons. A lower-order approximate calculation extends these predictions to the distance-55 Surface-49. These results clearly indicate error rates below the fault-tolerance threshold of surface code, and the potential for Surface-17 to perform beyond the break-even point of quantum memory. At state-of-the-art qubit relaxation times and readout speeds, Surface-49 could surpass the break-even point of computation.Comment: 10 pages + 8 pages appendix, 12 figure

    Subminimal Paths on a Stochastic Graph

    Full text link
    A simple model of a frustrated disordered system is presented. Apart from the (very different) physical interpretation, the model shares many features with that of Sherrington-Kirkpatrick for spin glasses, but, as a consequence of its relative simplicity, its ground state can be exactly determined by numerical methods. This fact allows us to test experimentally some theoretical predictions, based on a specialization of the ``cavity method'' developed for the SK model, which is presently limited to a ``non-frustrated'' approximation, corresponding to some extent to the replica-symmetric one for the SK model.Comment: 24 pages, Plain TeX with macros included, 10 PostScript figures in a separate file, included via EPSF and ROTATE macro packages for DVIPS driver, internal report Dipartimento di Fisica dell'Univ. di Roma La Sapienza e INFN sezione di Roma n. 104
    • …
    corecore