3,793 research outputs found

    New results on word-representable graphs

    Full text link
    A graph G=(V,E)G=(V,E) is word-representable if there exists a word ww over the alphabet VV such that letters xx and yy alternate in ww if and only if (x,y)∈E(x,y)\in E for each x≠yx\neq y. The set of word-representable graphs generalizes several important and well-studied graph families, such as circle graphs, comparability graphs, 3-colorable graphs, graphs of vertex degree at most 3, etc. By answering an open question from [M. Halldorsson, S. Kitaev and A. Pyatkin, Alternation graphs, Lect. Notes Comput. Sci. 6986 (2011) 191--202. Proceedings of the 37th International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2011, Tepla Monastery, Czech Republic, June 21-24, 2011.], in the present paper we show that not all graphs of vertex degree at most 4 are word-representable. Combining this result with some previously known facts, we derive that the number of nn-vertex word-representable graphs is 2n23+o(n2)2^{\frac{n^2}{3}+o(n^2)}

    Solving computational problems in the theory of word-representable graphs

    Get PDF
    A simple graph G = (V, E) is word-representable if there exists a word w over the alphabet V such that letters x and y alternate in w iff xy ∈ E. Word-representable graphs generalize several important classes of graphs. A graph is word-representable if it admits a semi-transitive orientation. We use semi-transitive orientations to enumerate connected non-word-representable graphs up to the size of 11 vertices, which led to a correction of a published result. Obtaining the enumeration results took 3 CPU years of computation. Also, a graph is word-representable if it is k-representable for some k, that is, if it can be represented using k copies of each letter. The minimum such k for a given graph is called graph's representation number. Our computational results in this paper not only include distribution of k-representable graphs on at most 9 vertices, but also have relevance to a known conjecture on these graphs. In particular, we find a new graph on 9 vertices with high representation number. Also, we prove that a certain graph has highest representation number among all comparability graphs on odd number of vertices. Finally, we introduce the notion of a k-semi-transitive orientation refining the notion of a semi-transitive orientation, and show computationally that the refinement is not equivalent to the original definition, unlike the equivalence of k-representability and word-representability.Publisher PDFPeer reviewe

    On the Representability of Line Graphs

    Full text link
    A graph G=(V,E) is representable if there exists a word W over the alphabet V such that letters x and y alternate in W if and only if (x,y) is in E for each x not equal to y. The motivation to study representable graphs came from algebra, but this subject is interesting from graph theoretical, computer science, and combinatorics on words points of view. In this paper, we prove that for n greater than 3, the line graph of an n-wheel is non-representable. This not only provides a new construction of non-representable graphs, but also answers an open question on representability of the line graph of the 5-wheel, the minimal non-representable graph. Moreover, we show that for n greater than 4, the line graph of the complete graph is also non-representable. We then use these facts to prove that given a graph G which is not a cycle, a path or a claw graph, the graph obtained by taking the line graph of G k-times is guaranteed to be non-representable for k greater than 3.Comment: 10 pages, 5 figure

    Semi-Transitive Orientations and Word-Representable Graphs

    Get PDF
    A graph G=(V,E)G=(V,E) is a \emph{word-representable graph} if there exists a word WW over the alphabet VV such that letters xx and yy alternate in WW if and only if (x,y)∈E(x,y)\in E for each x≠yx\neq y. In this paper we give an effective characterization of word-representable graphs in terms of orientations. Namely, we show that a graph is word-representable if and only if it admits a \emph{semi-transitive orientation} defined in the paper. This allows us to prove a number of results about word-representable graphs, in particular showing that the recognition problem is in NP, and that word-representable graphs include all 3-colorable graphs. We also explore bounds on the size of the word representing the graph. The representation number of GG is the minimum kk such that GG is a representable by a word, where each letter occurs kk times; such a kk exists for any word-representable graph. We show that the representation number of a word-representable graph on nn vertices is at most 2n2n, while there exist graphs for which it is n/2n/2.Comment: arXiv admin note: text overlap with arXiv:0810.031

    On word-representability of polyomino triangulations

    Get PDF
    A graph G=(V,E)G=(V,E) is word-representable if there exists a word ww over the alphabet VV such that letters xx and yy alternate in ww if and only if (x,y)(x,y) is an edge in EE. Some graphs are word-representable, others are not. It is known that a graph is word-representable if and only if it accepts a so-called semi-transitive orientation. The main result of this paper is showing that a triangulation of any convex polyomino is word-representable if and only if it is 3-colorable. We demonstrate that this statement is not true for an arbitrary polyomino. We also show that the graph obtained by replacing each 44-cycle in a polyomino by the complete graph K4K_4 is word-representable. We employ semi-transitive orientations to obtain our results
    • …
    corecore