131 research outputs found

    Optimal Control with Information Pattern Constraints

    Get PDF
    Despite the abundance of available literature that starts with the seminal paper of Wang and Davison almost forty years ago, when dealing with the problem of decentralized control for linear dynamical systems, one faces a surprising lack of general design methods, implementable via computationally tractable algorithms. This is mainly due to the fact that for decentralized control configurations, the classical control theoretical framework falls short in providing a systematic analysis of the stabilization problem, let alone cope with additional optimality criteria. Recently, a significant leap occurred through the theoretical machinery developed in Rotkowitz and Lall, IEEE-TAC, vol. 51, 2006, pp. 274-286 which unifies and consolidates many previous results, pinpoints certain tractable decentralized control structures, and outlines the most general known class of convex problems in decentralized control. The decentralized setting is modeled via the structured sparsity constraints paradigm, which proves to be a simple and effective way to formalize many decentralized configurations where the controller feature a given sparsity pattern. Rotkowitz and Lall propose a computationally tractable algorithm for the design of H2 optimal, decentralized controllers for linear and time invariant systems, provided that the plant is strongly stabilizable. The method is built on the assumption that the sparsity constraints imposed on the controller satisfy a certain condition (named quadratic invariance) with respect to the plant and that some decentralized, strongly stablizable, stabilizing controller is available beforehand. For this class of decentralized feedback configurations modeled via sparsity constraints, so called quadratically invariant, we provided complete solutions to several open problems. Firstly, the strong stabilizability assumption was removed via the so called coordinate free parametrization of all, sparsity constrained controllers. Next we have addressed the unsolved problem of stabilizability/stabilization via sparse controllers, using a particular form of the celebrated Youla parametrization. Finally, a new result related to the optimal disturbance attenuation problem in the presence of stable plant perturbations is presented. This result is also valid for quadratically invariant, decentralized feedback configurations. Each result provides a computational, numerically tractable algorithm which is meaningful in the synthesis of sparsity constrained optimal controllers

    Stabilization of Linear Systems with Structured Perturbations

    Get PDF
    The problem of stabilization of linear systems with bounded structured uncertainties are considered in this paper. Two notions of stability, denoted quadratic stability (Q-stability) and μ-stability, are considered, and corresponding notions of stabilizability and detectability are defined. In both cases, the output feedback stabilization problem is reduced via a separation argument to two simpler problems: full information (FI) and full control (FC). The set of all stabilizing controllers can be parametrized as a linear fractional transformation (LFT) on a free stable parameter. For Q-stability, stabilizability and detectability can in turn be characterized by Linear Matrix Inequalities (LMIs), and the FI and FC Q-stabilization problems can be solved using the corresponding LMIs. In the standard one-dimensional case the results in this paper reduce to well-known results on controller parametrization using state-space methods, although the development here relies more heavily on elegant LFT machinery and avoids the need for coprime factorizations

    Generalized q-Onsager algebras and boundary affine Toda field theories

    Full text link
    Generalizations of the q-Onsager algebra are introduced and studied. In one of the simplest case and q=1, the algebra reduces to the one proposed by Uglov-Ivanov. In the general case and q≠1q\neq 1, an explicit algebra homomorphism associated with coideal subalgebras of quantum affine Lie algebras (simply and non-simply laced) is exhibited. Boundary (soliton non-preserving) integrable quantum Toda field theories are then considered in light of these results. For the first time, all defining relations for the underlying non-Abelian symmetry algebra are explicitely obtained. As a consequence, based on purely algebraic arguments all integrable (fixed or dynamical) boundary conditions are classified.Comment: 13 pages; to appear in Lett. Math. Phy

    Linear Control Theory with an ℋ∞ Optimality Criterion

    Get PDF
    This expository paper sets out the principal results in ℋ∞ control theory in the context of continuous-time linear systems. The focus is on the mathematical theory rather than computational methods
    • …
    corecore