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The Class of Stabilizing 
Nonlinear Plant Controller Pairs 

A. D. B. Paice, Member, IEEE, and Arjan J. van der Schaft, Member, IEEE, 

Abstract-In this paper a general approach is taken to yield 
a characterization of the class of stable plant controller pairs 
which is a generalization of the Youla parameterization for 
linear systems. This is based on the idea of representing the 
input-output pairs of the plant and controller as elements of 
the kernel of some related operator which is denoted the kernel 
representation of the system. It is demonstrated that in some sense 
the kernel representation is a generalization of the left coprime 
factorization of a general nonlinear system. Results giving one 
method of deriving a kernel representation for a nonlinear plant 
with a general state-space description are presented. 

I. INTRODUCTION 

OST controller synthesis problems may be formulated 
as follows: Given a plant G, design a controller K 

such that the closed-loop system is stable and satisfies given 
(optimal) performance criteria. It is thus convenient to have 
a parameterization of the class of controllers which stabilize 
the plant and to optimize the performance criteria within this 
class. This approach has been quite successful in the linear 
case, the result being the Youla-Kucera parameterization, 
yielding for example an approach to the solution of the 'Ha- 
control problem [3]. By providing such a parameterization 
for nonlinear feedback systems, it is hoped that nonlinear 
controller synthesis problems may also become more tractable. 
In particular, one would like to tackle the nonlinear 7-1,- 
optimal control problem in this way. 

The object of this paper is to reproduce the results which 
gave the Youla parameterization for nonlinear systems, as 
obtained using left coprime factorizations, of [13] in a more 
general framework. By taking this more general approach 
some implicit assumptions are avoided, and it is shown that 
state-space versions of these results are immediately available. 
This overcomes a major weakness in the left factorization 
theory, where state-space descriptions have only been found 
for two cases [9], [17]. 

A method of representing nonlinear systems is presented 
which we denote the kemel representation of the system. The 
input-output pairs of a system may be found in the kemel 
of this related operator which maps from the combined input 
and output spaces to some other space. This has obvious links 
to the behavioral approach to control developed by Willems; 
see, for example, [24] and [25] and the references therein. In 
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this paper the authors do not explore these links but develop 
a framework in which kernel representations may be used in 
the definition of such concepts as well posedness and stability 
of a closed-loop system and investigate their role as a gener- 
alization of left coprime factorizations of nonlinear operators. 

It is demonstrated that with the characterizations of well 
posedness and stability presented, the class of plants stabilized 
by a given controller, the class of controllers stabilizing a given 
plant, and the class of all stable plant controller pairs may be 
easily parameterized. This mimics the results of [ 131, where 
such results were obtained using left coprime factorizations 
of the plant and controller, and the linear results of [19] 
which uses the Youla parameterization. The results presented 
in this paper are, however, more general. First, as they are 
applicable to a wider class of systems, and second as they 
are derived without distinguishing between the input and 
output spaces of the plant and controller. The development 
of the relationship between the kernel representation and the 
input-output representation of the system is delayed until after 
the presentation of the main results to emphasize the latter fact. 

Once it has been demonstrated how a kernel representation 
may be specialized to yield an input-output representation 
for the system, a version of the Youla parameterization for 
nonlinear systems is presented in terms of kernel repre- 
sentations. The links to factorization of nonlinear operators 
are then explored, and it is suggested that stable kernel 
representations give a more appropriate generalization of left 
coprime factorizations of linear systems than the nonlinear left 
factorizations which have been investigated in the literature 
to date; see for example [l], [5], [61, [91, [ I l l ,  [12], [14], 
and [17]. A further specialization shows how state-space 
realizations of kernel representations for nonlinear systems 
may be derived. 

This work continues a series of investigations into the 
use of coprime factorizations in nonlinear systems analysis. 
Specifically, the motivation for these results is due to the use 
of left coprime factorizations of nonlinear systems, where a 
version of the Youla parameterization, giving the class of all 
linear controllers stabilizing a linear plant, has been derived; 
see [13] or [12] for details. This line of investigation was 
initiated by Hammer [5], [6], where it was demonstrated that 
if a right coprime factorization of a nonlinear plant satisfies a 
Bezout identity, then there exists a stabilizing pre- and post- 
compensator pair for the plant. Tay [ 181 showed that this leads 
to a class of such compensator pairs. This was then generalized 
by Paice and Moore [ l l ] ,  [12], [14] to derive a nonlinear 
version of the Youla parameterization. 

0018-9286/96$05.00 0 1996 IEEE 
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Recent work by Hammer [7] appears at first glance to be 
similar to the results presented in this paper; however, the 
overall approach is different. The idea of using a stabilizing 
pre- and post-compensator pair has been generalized in [7], 
and although it leads to a class of stabilizing compensators, 
the results obtained are of a different form to those derived 
here. 

Other work has been conducted attempting to derive a right 
factorization based approach to these results, notably the work 
by Verma [20]-[22]; see also the work by Chen [l], [ 2 ] .  A 
general Youla parameterization using this approach has not 
been derived. However, based on the work of Sontag [16], 
a state-space formulation has been derived for right coprime 
factorizations. To date, state-space formulations for nonlinear 
left coprime factorizations have been derived for a special case 
in Moore and Irlicht [9] and more generally in [ 171. In the latter 
work, sufficient conditions are derived for left factorizations 
to exist; however, these are very restrictive, and it is not clear 
how they should be checked. 

The paper is organized as follows. In Section I1 a general 
framework for using stable kernel representations is presented. 
The concepts of well posedness and stability of feedback 
systems are developed for use within this framework. The 
main results of the paper are presented in Section 111, giving 
the class of stable closed-loop systems which are representable 
within this framework. This class is parameterized in a way 
which specializes to the Youla parameterization in the linear 
case. The relationship of the stable kernel representation 
( s h )  of a system to its input-output representation is then 
developed. It is shown that the existence of an input-output 
representation is equivalent to the well posedness of the 
system when it is in closed loop with the zero operator. 
Using this specialization, more direct versions of the Youla 
parameterization are derived. In Section IV it is demonstrated 
that the results which are currently available via nonlinear 
left coprime factorizations may also be derived using stable 
kernel representations. It is suggested that stable kernel repre- 
sentations are a more useful nonlinear generalization of linear 
left coprime factorizations than those currently available in the 
literature. This is further supported in Section V, where a state- 
space approach to deriving stable kernel representations due to 
Scherpen and van der Schaft [ 151 is presented. It may be seen 
that the state-space representation is a specialization of the 
more general framework developed in Section 11. Conclusions 
are drawn in Section VI. 

. 1 Y 
R% 

11. KERNEL REPRESENTATIONS 

In this section the notion of representing a general system, 
E, as being represented by the kernel of a family of operators 
parameterized by the initial conditions of the system, is 
introduced. This is extended to give kernel representations of 
feedback systems by simply joining the kernel representation 
of the system and its compensator. Definitions of well posed- 
ness and stability of feedback systems are then presented for 
use within this framework. 

In the sequel the term system will be taken to denote a 
general (dynaniical) system, and the terms feedback system or 
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Fig. 1. The kemel representation of C for initial condition IC E K .  

closed-loop system will be used to indicate an interconnection 
of such systems. 

A. Representing a General System 

Consider the system C, with input and output spaces U and 
7 respectively, and initial condition space XE. Note that U 
and 7 are taken to be signal spaces, that is sets of functions 
from a given time domain to a given signal set, which may be 
for example a discrete set, manifold, or vector space, whereas 
the initial condition space XE is not a function space. It is 
assumed that every such system under consideration may be 
described by a family of maps 

R E : y x U + Z ,  VXEXE (1) 

where Z is a signal space, known as the kernel representation 
of E, such that all possible input-output pairs U, y for the 
system C with initial conditions x E XE satisfy 

RE(y, U )  = 0. (2) 

Note that it is not assumed that 2 is a vector space; our 
approach does not use any properties of Z .  We only assume 
that there is a distinguished element of Z which we denote 
by zero. 

Remark 2.1: For the subsequent developments, until 
Section 111-B, it is in fact not necessary to distinguish a priori 
between inputs and outputs. Indeed, if we group U and y into a 
single vector w, then the entire framework and all results will 
remain valid for systems described as R”,w) = 0, where RS 
is an operator from W (the space of external signals) to Z .  
This is clearly related to the behavioral approach to control, 
see, e.g., [24] and [25], although in this latter context one 
does not usually consider kernel representations of this type. 
(Instead one normally considers kemel representations of the 
form RE(w) = 0, where RE is some (possibly nonlinear) 
differential operator. Furthermore, in this context the state- 
space X is usually not a priori given, but must be derived, 
e.g., from the above description of the behavior as a set of 
(higher-order) differential equations.) 

In general it is not possible to describe a kernel representa- 
tion by a single map RE : y x U + 2; however for brevity, 
we shall refer to the kernel representation RE. The key to 
the development of the following results is to examine the 
solutions to 

RE(Y, U )  = 2 (3) 

where z is not necessarily equal to zero. This may be visualized 
as in Fig. 1. 

For z arbitrary, the input-output map induced by the so- 
lution pairs to (3) for a given initial condition x E X will 
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Fig. 2. The system {G, K }  without extemal inputs 

be denoted by Cz(x) : U H 3.'; although as noted above, 
the following development is not dependent on the existence 
of this map. The input-output map C g ( x ) :  U H y will be 
simply denoted by C ( x ) ,  the input-output map of C for initial 
condition x. 

Note that the kernel representation for a given system will 
not be unique, for example any input-output map C ( x )  : U H 
Y may be represented in this form by R",y, U )  = y - C(z)u ,  
although, this is not a useful form for the purposes of this 
paper. Later, additional assumptions will be assumed to hold 
for the map RE(., .). 

B. Feedback Systems 

In this section the notion of interconnecting two systems, 
the plant and the controller, to form a closed-loop or feedback 
system is introduced and developed for use within this frame- 
work. Note that it is common to allow for the introduction of 
external signals between the plant and controller to account 
for reference signals or noise signals corrupting the control 
or measured signal; see, for instance, [13]. For simplicity, 
only the case where these external signals are zero will be 
considered; this is referred to as the noise-free case. 

Remark 2.2: In general the problem becomes much more 
difficult when considering a feedback system with external 
inputs, so this is left to another study. In the linear case, 
any external disturbances may be directly accounted for by 
perturbations to XG and Z K .  In the case that all external 
disturbances can be represented by stable perturbations to ZG 

and X K ,  it is expected that the loop may be reposed as in 
Fig. 3, yielding stability results for the closed loop. 

Consider a plant, G : U + y ,  and controller, K : y -+ U ,  
with kernel representations 

(4) 
( 5 )  

RG: y x U + ZG 
R K :  U x y -+ Z K  

which are interconnected to form the system {G,  K }  as in 
Fig. 2. The closed loop then has a kernel representation 

R{G,K): Y x U + ZG x ZK 

as in Fig. 3 .  
The existence of a solution pair ( U ,  y) for a given (ZG,  Z K )  

is not guaranteed. Thus, to work with feedback systems within 
this framework, we will need to assume that for each (ZG, Z K )  

pair, a solution exists and is unique. This property is known 
as well posedness. 

IY 
U 

RK 

Fig. 3. The kemel representation of {G, K } .  

Dejinition 2.3 [Well Posedness): The system {G,  K }  is 
well posed iff for all initial conditions, (ZG, Z K )  E XG x X K ,  
and for all (ZG,  Z K )  E ZG x Z K ,  a solution (U,  y) to (6) 
exists and is unique. That is, for all (20, X K )  E XG x X K  

[R:Z:",;]-l: ZG x ZK -+ U x 3/ exists. (7) 
0 

Remrk2.4: The above definition of well posedness of a 
feedback system, when specialized to linear systems, is very 
similar to the notion of regular feedback interconnection as 
proposed in [26]. Note that the requirement of existence of 
unique solutions w = (i) for every x E X excludes the 
possibility of singular feedback [26]. 

In the sequel, the well posedness of such feedback systems 
will be considered over increasingly large cross products 
of signal and initial condition spaces. Thus the following 
notational convenience is adopted: 

C. Stability 

We now define the concept of stabiliiy for general nonlinear 
operators and feedback systems. This is defined implicitly via 
the notion of stability on the various input and output spaces of 
these operators. A signal space Z is divided into two disjoint 
subsets as follows: , 

Z = Z s u Z u ,  ZsnZ"=O 

where Z" denotes the set of all stable signals and Z" the set 
of all unstable signals. For the space Z G K ,  Z,& is defined to 
be Z& x ZS;, and ZgK is the remainder of the space. 0 

Note that Z may be partitioned in many ways. It is not 
assumed that Z" is open, closed, or a vector space, although it 
is assumed that the distinguished element 0 E Z " .  Commonly 
these sets are formed by defining a n o m  on the space Z and 
then defining a signal to be stable iff it has finite norm. 

Dejillzition 2.5 (Operator Stability): An input-output map 
E:  U -+ y is said to be stable if the image of U s  under C is 
a subset of Y s .  U 

Note that for a given system, C, there are many possi- 
ble kemel representations. In the sequel only those kernel 
representations which are stable will be considered. 
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Definition 2.6 (Stable Kernel Representations): A kernel 
representation RE : Y x U -+ 2 of is called a stable kernel 
representation ( skr )  of C iff for all initial conditions x E Xx, 

z = R$(y, U) E 2". 

kernel representation for E. Consider 2 : U 4 Y and 
that there exists a mapping 
that '9 E Y3 F y  # O. Then a 
may be defined as follows: 

111. MAIN RESULTS 

In this section fie results of [ 121 and [ 141 giving nonlinear 
of the Youla paramete~zation are generalized to use 

The construction of a general well posed and stable class 
of plant-controller pairs from a given well posed and stable 

skr (6) is first presented. It is 
shown that this generates the class of all well posed and stable 
feedback systems which are expressible within this framework. 
A specialization of our framework which admits a well-defined 
input-output operator for each kernel representation is then 

y - X u ,  y ~ Y " o r u ~ U "  developed. Results giving the class of stabilizing controllers 

RE(*, '> is a stable operator. That is, if Y E Y",  U E U", then the framework presented in the previous section. 

Remark 2.7: Note that in most cases there will exist a stable 

and 
assume feedback system {G, K }  

: Y -+ Y which is 
representation 

E Ys, U E U", ( y  - E Ys 

(8) 

for a given plant and the class of plants stabilized by a given 
controller are then stated. otherwise. 

The signal space 2 is then Y ,  and 2" = Y". 
Remark2.8: In general, the definition of the signal space 

2 will depend on the definitions of U and Y ,  as in the 
construction (8). Although it would be possible to trivially 
define 2" as the image of ys x U" under Rc(y,  U )  = 
y - X U ,  this would lead to trivial results in the sense that the 
stability characterizations thus obtained would only hold for 
that definition of 2 " .  Such results would not specialize to the 
linear results. The results developed in this paper are applicable 
for systems where the stable signals 2" are a priori defined. 

Unless otherwise stated, all kernel representations used in 
the sequel will be skr's. 

The definition of stability is now extended to include closed- 
loop systems. 

' Dejnition 2.9 (Closed-Loop Stability): The closed-loop 
system {G, K }  with skr R{G,K) as in (6) is stable over 
BGK C 2 & K  X XGK if it is well posed, and for d l  pairs 
(ZGK,  X G K )  E 2&K x XGK the solution (9 ,  U) to (6) is 
stable iff ( Z G K ,  Z G K )  E BGK. 

A section of BGK corresponding to the initial condition x 
is defined as follows: 

0 
The system { G, K }  is said to be generally stable, or simply 

stable, if it is stable over 2&K x X G K .  The system signals 
(U, y) must be unstable for ZGK E 2zK, otherwise the 
stability of the kernel representations RG and RK would be 
contradicted. 

Lemma 2.10: The system {G, K }  is well posed and stable 
over B C 2&K x XGK iff for all X G K  E XGK the map 

[R?E:,,]-' : 2 + Y x U exists (9) 

and 

The proof arises out of the definitions and is left to the 
reader. 

A. Class of Stabilizing Plant, Controller Pairs 

with slcr's 
Consider the systems S :  2, -+ ZG and Q :  2 G  --f 2 K  

and initial condition spaces Xs, XQ,  respectively. 

representations R G ~  and R K ~  
The systems G s  and KQ are defined via their stable kernel 

R G ~  : Y x U -+ 2s 

(i) 13 zs = RS(RG(y, U ) ,  RK(% 9)) (13) 

and 
R K ~ :  U x y -+ ZQ 

(;> t--t ZQ = R Q ( R K ( U ,  y), R G ( Y ,  U ) ) .  (14) 

Note that the initial condition spaces of Gs and KQ are 
X S  x XGK and XQ x X G K ,  respectively. 

The properties of the feedback loop {Gs, KQ},  as shown in 
Fig. 4, are now investigated. This investigation yields the main 
results of the paper and follows in a straightforward fashion 
from the definitions of the previous section. 

The following results become quite complex but may be 
readily understood when the equivalence of the two system 
representations, Figs. 4 and 5 ,  is recognized. 

Theorem 3.1: Consider a well-posed system {G, K }  with 
skr (6), and systems S, Q, with skr's (11) and (12), re- 
spectively, giving Gs and KQ with skr's (13) and (14), 
respectively. Then the closed-loop system {Gs,  KQ} is well 
posed iff the closed-loop system { S,  Q} is well posed. 

Further, given a well-posed system {G*, K*}  with skr 
R{G* ,K*  }, there exist kernel representations R p ,  RQ* , for the 
systems S* and Q* such that Gs. = G* and KQ* = K*, and 
the system {S* ,  Q*} is well posed. If {G, K }  is stable, then 
Rs. and RQ* will be stable kernel representations; otherwise, 
they will be stable over a set of inputs and initial conditions 

0 which includes BGK x X G - ~ .  
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Fig. 4. The kernel representation of { G s ,  K Q } .  

Fig. 5.  An equivalent representation of {Gs ,  K Q } .  

Pro08 By well posedness of {G, K } ,  for all X G K  E 
XGK the map [RTgZ}]-' exists. From (11) and (12), the 
kernel representation of {S, Q} is given by 

Thus, for arbitrary initial conditions X G K  E X G K ,  X S Q  E XSQ 

(17) 

where juxtaposition of kernel representations indicates com- 
position. For each set of initial conditions ( X G K ,  XSQ), the 
map [RT;fk}]-' exists; therefore, [ R ~ ~ ~ ~ ~ ~ ] - '  will exist if 
and only if [RTi21]-' exists. Thus, by the definition of well 
posedness, {Gs, KQ}  is well posed iff {S, Q} is well posed, 
proving the first part of the theorem. 

Suppose (G*,  K * }  is well posed, with initial condition 
space X G - K - ,  and skr 

(18) 

R ~ G K ~ ~ S Q  - R ~ S Q  R X G K  

{ G s , K Q }  - { S , Q }  { G , K }  

R{G-,K*} : y x IA + ZG* x Z K * .  

The systems S* and Q*, with initial condition spaces 
X p  = XG- x X G K ,  XQ* = X K *  x X G K ,  respectively, are 
defined via the kemel representation for { S* , Q*} as follows: 

(19) 

RxG:K',xGK - R"G"K* RXGK - 
{ S  ,&*I - { G * , K * ) [  { G , K ) ]  ' : ZGK + ~ G * K * .  

Thus 

Rg*  = RZ' : ZGK --+ ZG* (20) 
R Z "  = Rg<* [R?E$)]-' : ZGK -+ Z K * .  (21) 

As {G*. K * }  and {G, K }  are well posed, (19) gives well 
posedness of the system {S*, Q*}.  The initial condition space 
of Gs is given as 

Xes- 1 Xs* x XGK = XG* x XGK x XGK (22) 

and thus covers X p .  By the definitions given above 

which is equal to R 2  provided z,?k = x$k. Thus Gs. with 
the restricted initial condition space Xp x diag ( X G K  x X G K )  
equals G*. Strictly speaking, this is a nonminimal realization 
of G*. The same argument applies, giving equality of KQ* 
and K*. 

If {G, K }  is generally stable, then it is immediate from 
(20) that Rs- is a skr for S* iff RG* is a skr for G*, and 
from (21), RQ* is a skr for Q* iff RK* is a skr  for K*. If 
{ G, K }  is not generally stable, then for the set of inputs and 
initial conditions for which ( Z G K ,  X G K .  X G * K * )  E BGK x 
X G - K - ,  [ R ? ~ ~ C , } ] - ' ~ G K  is stable, and thus Rg$K'xG* ZGK 
and R"GK>"K* X G ~ C  will be stable, completing the proof. U 

Remark 3.2: Note that for {G, K }  not generally stable, 
the actual set of input, initial condition sets over which Rs. 
and RQ* are stable may be wider than that given by the 
theorem. The additional inputs for which Rs. and RQ* give 
stable outputs are given, for each set of initial conditions 
( X G K ,  X G * K * ) ,  by the sets 

B& = R Z *  ([R7;:K}]-'Z&K n[R",s'*]-lZ& n ( Y  x U ) u )  

and 

B* Q = R>?* ([RY;~%)]-'Z&K n[R>?*]-'Z&* n ( Y X U ) ' " )  

respectively. 
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Remark 3.3: Note that the initial conditions of the plant 
and controller must be available when constructing the new 
system {Gs, KQ}; this means that KQ uses the exact initial 
conditions of the plant G. In practice this may not be feasible 
which limits the applicability of these results; however, this 
is a feature of the input-output approach which seems to be 
unavoidable. It is hoped that the notation developed here, 
where initial conditions must be explicitly accounted for, 
makes this point explicit. Note that the effects of different 
plant initial conditions may be modeled within the parameter 
Q, and thus stability of the closed loop may be examined using 
the techniques of the following theorem. In this way the extent 
of the stability set BGK may be explored. 

The previous theorem is now extended to give the stability 
properties of the closed-loop {Gs, KQ}. 

Theorem 3.4: Consider a system {G, K }  with skr (6) 
which is well posed and stable over BGK and systems S, Q, 
with slcr's (1 1) and (12), respectively, giving Gs  and KQ with 
skr's (13) and (14), respectively. Then the closed-loop system 
{Gs, KQ}  of (16) will be well posed and stable over B G ~ K ~  
iff the closed-loop system { S ,  Q} of (15) is well posed and 
stable over BSQ, where 

(ZSQ, ZSQ, Z G K )  E B G ~ K ~  e (ZSQ, ZSQ) E BSQ 
and ([RTg>}]-'zSQ, Z G K )  E B G K .  (24) 

Further, given a system {G*, K * }  with skr R { G * , K * }  : (U, 

y) H ZG*K* which is well posed and stable over B G * K * ,  there 
exist "stable" kernel representations for the systems S* and 
Q* given by (20) and (21), respectively, such that Gs. = G* 
and KQ* = K*, and the system (S* ,  Q*} is well posed and 
stable over 

B:Q = BG*K* x xGK U { ( Z G * K * ,  Z G * K * ,  w K )  : 

( z G * K * ,  X G * K * )  

$! & * K * ,  [ R ~ ~ : ~ : , " G K ] - ' Z G * K *  E 2 & K } .  (25) 

If {G, K }  is generally stable, then (20) and (21) give skr's 
for S* and Q*, and the set in parenthesis in (25) will be empty. 

0 
Remark 3.5: Note that the second set in the right-hand side 

of (25) may be given the form 

{ ( z G * K * ,  Z G * K * ,  Z G K ) :  ZG*K* E RTz:g.} 

' ([R:z%)]-'2GK n [ ~ ~ ~ : ~ * } ] - ' 2 & * K *  n ( y  x U)")) 

as may be easily seen from Remark 3.2. 
Proof: By Theorem 3.1, {Gs, KQ} is well posed iff 

{S ,  Q} is well posed and (17) holds. This equation may be 
inverted. Thus, for all initial conditions ZGK E XGK and 
X S Q  E XSQ 

Necessity of (24) is now proven. Suppose that { S ,  &} 
is stable over BSQ, and consider ( Z S Q ,  Z S Q )  E BSQ, then 
zGK = [RT;>}]-'ZSQ is stable. If ( z G K ,  ZGK) E BGK,  

then (y, U )  = [RTZ%)]-"Z,, is stable. By (26), (y, U )  = 

[ R ~ G s , ~ Q ~ ] - l Z S Q ~  and thus (ZSQ,  Z S Q ,  Z G K )  E B G s K Q ,  as 
required. 

To prove sufficiency of (24), assume {Gs ,  KQ}  sta- 
ble over B z ~ G ~ K ~ ,  and consider the action of (27) on 

ZSQ is stable, and as R { G , K )  is a skr for {G, K } ,  [RT[L}]-' 
ZSQ = RTz:Kl(y, U )  is stable, giving (ZSQ, ZSQ) E BSQ. 
Further, due to the stability of (y, U )  and well posedness of 
{G, K } ,  ( Z G K ,  ZGK) E BGK. Thus {Gs, KQ}  is stable over 
B G ~ K ~  iff { S ,  Q) is stable over BSQ as in (24). 

Suppose that the system {G*, K * )  is well posed and 
stable over BG*K*,  By Theorem 3.1, there exist systems 
S*, Q*, defined via the kernel representations (20) and (21), 
respectively, such that G* = Gs. and K *  = KQ*, and 
{S*,  Q*} is well posed. 

The stability of { S*, &*} is now investigated by construct- 
ing B p  ,&*. By Definition 2.9 

B:Q = { ( z G * K * ,  Z G * K * ,  Z G K )  

X S Q r X G K  

Z G K  X S Q  
( Z S Q ,  ZSQ, X G K )  E B G ~ K Q .  Then (Y, U )  = [R{Gs:KQ>]-' 

X G *  K *  , X G K  : [Ri,.,&*} ]-'zG*K* E z&,}. (28) 

Note that if ( z G * K * ,  ZG*K*)  E B p p ,  then (y, U )  = 
[RTZ::I;,}]-'ZG*,J~ is stable, and by stability of the kernel 
representation R { G , K )  it is evident that 

[RTg: s:rGK ] ZG* K *  

- R X G K  RxG* K *  i x C K  
- ( G , K ) [  {s*,Q*) I-'ZG*K* E z&K.  

Thus BG*K* x XGK c Bs*Q*. The expression (25) for B:Q 
follows immediately. 

If {G, K }  is generally stable, then by Theorem 3.1, (20) 
and (21) give skr's for S* and &*. Further, for all triples 
( Z G * K * ,  Z G * K * ,  Z G K )  such that [ f i ; , " : z : ; G K ] - l Z ~ * ~ *  E 

Zi5K 
[RTZ:;C}]-' [ R 7 g : s : T G K ] - 1 ~ ~ * ~ *  

= [fiTz:g:)]- 'ZG*K* E U" x ys 
and thus ( z G * K * ,  X G * K * )  E BG*K*. Thus the second set in 

0 
Remark3.6: Given a closed-loop system {G, K }  with a 

stable kernel representation which is well posed and generally 
stable, it is possible to parameterize the class of all well-posed 
and stable systems which have skr's. Thus these theorems 
give a generalization of the linear results of Tay et al. [19] 
and the nonlinear results of Paice and Moore [12] when these 
are restricted to the noise-free case. 

Remark 3.7: Note that the apparent discrepancy between 
(24) and (25) is due to the fact that (20) and (21) do not 
necessarily give stable kernel representations for S* and &*. 

Remark 3.8: That slcr's lead to a parameterization of stable 
closed-loop systems suggests a link to the theory of coprime 
factorizations. This is explored in Section IV. 

Remark 3.9: By considering the system 0 :  U ++ 0 and 
defining how a given skr should relate to an input-output 
operator, it is possible to derive more explicit analogues of 
the Youla parameterization. This is explored in the following 
section. 

the right-hand side of (25) is empty. 
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B. Kernel Representations and Input-Output Operators 
section the definitions required to specialize the 
presented in Section I1 to an input-output frame- 

work are presented. It is seen that the key to these results is 
to apply the definitions of well posedness and stability for a 
closed loop to the system when in closed loop with the zero 
operator. 

As noted previously, since we have not distinguished be- 
tween the input and output spaces, the previous results may 
be considered from a behavioral point of view, Remark 2.1. 
In the case that we wish to move to an input-output or state- 
space point of view, it becomes necessary to assume that it is 
possible to identify inputs and outputs, and that once the inputs 
are specified, the outputs are determined. This is equivalent to 
assuming that given a set of initial conditions x E Xx, each 
z E Z ,  yields an input-output map 

C,(x)  : U --f y (29) 

such that y = C,(Z)U satisfies (3) for all U E U .  This property 
is denoted well definedness of the skr. 

Definition 3.10 (Well Definedness)r A kernel representation 
(1) is said to be well-defined if for each z E Z ,  and initial 
conditions z E Xx, (29) exists, so that for all U E U ,  

0 
Note that Re can be well-defined for x E Xx only if the 

y = C,(Z)U iff R",u, y) = z .  

map 

R",., U )  : y -+ Z (30) 

is one to one and onto, i.e., invertible. We denote this inverse 

(31) [R",]-l(., U )  : Z ---f y .  

This is summarized in the following result. 
Proposition 3.11: A given kernel representation (1) of C 

is well defined iff for all x E X and all U E U, the map 
0 

The proof is trivial and is left to the reader. 
We will also need to discuss the stability of an input-output 

operator. This is defined as follows. 
Definition 3.12 (System Stability): A system C with stable 

kernel representation RE(., .), as in (l), is stable over the set 
B c Z" x X, if for all ( 2 ,  x) E Z" x Xx the input-output 

0 
The system C with skr (1) is called generally stable, or 

simply stable, if it is stable over Z" x X. 
By considering the zero operator in closed loop with another 

system, it is possible to relate well definedness with well 
posedness and system stability with the previous definition 
of closed-loop stability. This property is presented in Lemma 
3.13. We first define a well-defined skr for the zero operator, 
0, defined by 

[RE]-'(., U )  of (31) exists. 

map C,(Z) is stable iff ( 2 ,  x) E B. 

L" 3.13: Consider a system C with 
Zx which is placed in closed-loop with the 
with skr  RO(U, y) = U [note that this is t 
(33)]. Then 

1) Re is well-defined iff the closed-lo 
posed. 

2) The operator C, : U -+ 31 is stable over BE c 2'; x X, 
iff the feedback system {E, 0) is stable over BE x Z;.  

U 
Note that the zero operator has no state space, and thus no 

initial condition space, so Bxo = 23, x Zl which is consistent 
with Definition 2.9. 

Proofi The system {E, 0} is well posed iff for all initial 
conditions xx E Xx, and all zc ,  zo the solutions to 

RT(9,  U )  = 

Bo(% Y) = 20 (34) 

exist and are unique. By (33), zg = U ,  thus {E, 0} is well 
posed iff for all z x ,  U the solution to 

RF(Y, U )  = zc 

exists and is unique. This will hold iff the function 
[R",C]-'(., U )  exists and by Proposition 3.11 RE is well 
defined. Thus {C, 0} is well posed iff RE is well defined. 

We assume now that the closed loop is well defined and 
consider its stability. The closed-loop {E, 0} is stable over 
BE x Z; iff for all initial conditions zc E XE, zx E B F Z O  E 
Z,, the unique solution to (34) is stable. By the preceding 
argument, this solution is given by U = zo, y = [R?]-'(., U ) .  

Thus the closed loop is stable over BE x 2: iff for all stable 
U ,  7~ = [RF]-l( . ,  U )  = E:;(.) is stable, giving stability of 

The corollaries to Theorem 3.4 derived by considering 
alternately S = 0 and Q = 0 are now expressible in a form 
more easily seen to be generalizations of the existing results 
giving the Youla parameterization. 

the system over BE. U 

C. The Youla Parameterization via Stable 
Kemel Representations 

The following corollaries to Theorem 3.4 give the class of 
all controllers which stabilize a given plant and the class of all 
plants stabilized by a given controller, respectively. They are 
generalizations of the results given in [ 111-[ 131 which were 
the first results giving Youla parameterizations for general 
nonlinear systems. 

Corollary 3.14: Consider a system {G, K }  with skr (6) 
which is well posed and stable over BGK and the system Q 
with skr (12) such that KQ is given by the skr  (14). Then the 
closed-loop system {G, KQ}  will be well posed iff the skr  
for Q is well defined. Further, {G, K Q }  will be stable over 
B G K ~  iff Q is well defined and stable over BQ, where' 

o : u - + y ,  VU E U, O ( U )  = 0 (32) ( Z G ,  ZQ, X Q ,  Z G K )  E B G K ~  * (ZQ,  X Q )  E BQ 
and ( Z G ,  Q z Q ( ~ ~ ) ~ ~ ,  X G K )  E BGK. (35) 

'Recall that Q z Q ( z ~ )  denotes an input-output in the f m l y  of in- 
put-output maps associated with Q via its stable kernel representation, so 
YQ = Q Z Q ( z ~ ) z ~  is the unique solution to R y ( y ~ ,  ZG)  = ZQ. 

as being given by 

Ro(Y, U )  = Y. (33) 
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Further, given a K* with skr RK* : ( U ,  y) X K - ,  the 
closed-loop system {G, K*}  is well posed iff the kernel 
representation for the system Q* given by (21) is well defined. 
If the system { G, K*}  is stable over B G ~ ,  then the stability 
properties of Q* are defined as follows: 

Qz,* ( z K * ,  Z G K ) Z G  = Z K  E 2& * ( z K * ,  ZG, Z K *  , 26) 
E BGK* U B&K* (36) 

where 

If {G, K }  is generally stable, the set B2K* is empty. 0 
Corollary3.15: Consider a system {G, K }  with skr (6) 

which is well posed and stable over BGK and the system S 
with skr (11) such that G s  is given by the skr (13). Then the 
closed-loop system {Gs, K }  will be well posed iff the system 
S is well defined. Further, {Gs, K }  will be stable over B G ~ K  
iff S is stable over Bs, where 

(ZS,  Z K ,  zs, ~ G K )  E B G ~ K  * (ZS ,  zs) E Bs 
and ( S Z s ( z s ) z ~ ,  Z K ,  Z G K )  E B G K .  (37) 

Further, given a G* with slcr RG* : (U, y) - ZG',  the 
closed-loop system {G*, K }  is well posed iff the kernel 
representation for the system S* given by (20) is well defined. 
If the system { G* , K }  is stable over BG* K ,  then the stability 
properties of S* are defined as follows: 

sz,- (ZG* , Z G K ) Z K  = ZG E 26 
* ( zG* ,  Z K ,  ZG*, Z K )  E B G * K U B & K  (38) 

where 

If {G, K }  is generally stable, the set B&K is empty. 0 
Remark 3.16: These corollaries give generalizations of the 

results presented in [ 121 to the stable kernel representation 
framework. They give explicit versions of the Youla parame- 
terization for linear systems. Further, as seen in Section V, it 
is possible to derive slcr's for nonlinear systems with general 
state-space representations. By applying these corollaries to 
this special case, a state-space characterization of the Youla 
parameterization for nonlinear systems may be derived. We 
believe that these are the first such results presented in the 
literature. 

Remark 3.1 7: That these results generalize the existing 
linear results may be easily seen as follows. Consider a 
linear system given by transfer matrix G(s) and a stabilizing 
controller given by the transfer matrix K(s ) .  Write the left 
coprime factorizations as G ( s )  = M - l ( s ) N ( s ) ,  K ( s )  = 
V-'(s)U(s)  for stable rational matrices M ( s ) ,  N ( s ) ,  U ( s ) ,  
V ( s ) .  Note that we can equivalently associate G(s), K(s ) ,  
with the kernels of the matrices RG = [ M ( s )  I - N ( s ) ] ,  
respectively, RK = [ -U(s)  1 V ( s ) ] .  Following Corollary 

Fig. 6. The Youla-Kucera parameterization. 

3.14, see also Fig. 5 ,  the input-output behavior of any sta- 
bilizing controller is generated as the set of ( U ,  y) resulting 
in ZQ = 0 in Fig. 6 for some stable system Q(s ) .  Restricting 
to zero initial conditions and linear stabilizing controllers, it 
follows that the input-output behavior of all linear stabilizing 
controllers is given by the kernels of 

= [V(S)  -I- Q ( s ) N ( s )  I - u ( ~ )  - Q(s)M(s)l (39) 

for any stable rational matrix Q ( s ) .  Note that the transfer 
matrix corresponding to (39) is 

KQ(s)  = [V(S)  + Q(~)N(s) l -~[u(s)  + Q(s)M(s)l 

and we recover the classical Youla-Kucera parameterization 
of linear stabilizing controllers in an insightful manner. 

I v .  RELATIONSHIP TO COPRIME FACTORIZATIONS 
In the previous section it was seen that the main results ob- 

tained in nonlinear factorization theory using left factorizations 
are duplicable using stable kernel representations. We now 
further explore the relationship between skr's and coprime 
factorizations and demonstrate that the skr of a general 
operator is a generalization of its left coprime factorization. 
It is shown that any operator with a left coprime factorization 
has a stable kernel representation and that the results derived 
linking nonlinear left and right coprime factorizations may 
also be obtained using skr's. 

In the sequel, all statements will be assumed to hold for 
arbitrary initial conditions, and so for notational convenience, 
the superscripts denoting the initial conditions have been 
suppressed. However, it should be noted that attention must 
be paid to initial conditions, as the validity of the factorization 
of an operator is initial condition dependent. 

We first define stable factorizations of a general nonlinear 
operator. 

Dejinition 4.1 (Stable Factorizations): The system C : U 
-+ Y has a stable right factorization if there exist stable 
operators 

D: 2, -+ U invertible, 
N :  2, -+ y (40) 

such that C = ND-' .  

there exist stable operators 
The system E :  U --+ y has a stable left factorization if 

B:  J J  -+ Zl invertible, 
N :  U -+ Zl (41) 

Q such that C = k l N .  
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The following result establishes that the sky  of a system is 
a generalization of the left factorization of a system. 

Proposition 4.2: A system C : U + y will have a stable 
left factorization (41) iff there exists a stable kernel represen- 
tation RE for C (1) which is well defined and separabIe in 
the sense that 

(42) 

D = R,, N = R,. (43) 

Rc(Y, U )  = % ( Y )  - % ( U ) .  

The stable factorization will be given by 
I 

0 
Proofi Suppose that C = D-lN is a stable left factor- 

R c : Y x U + Z ,  R ( y , u ) = D y - N u  (44) 

is a stable kernel representation for E. Further, as d is 
invertible, the operator [RE]-'( ., U )  exists and by Proposition 
3.11 C is well defined for this sky .  

Conversely, suppose that RE : y x U --+ Z is a stable kernel 
representation for C which is well defined and separable in the 
sense of (42). The operators D and 8 of (43) will be stable, 
and to prove that this is a stable left factorization of C it only 
remains to be shown that D is invertible. By Proposition 3.11, 
the operator [Rc]-'(., U )  exists, that is, once U is fixed, there 
exists a one-to-one and onto mapping between z and y .  It is 
straightforward to see that this implies that is invertible, 

0 
Note that in the linear case, all skr's are separable and thus 

equivalent to left factorizations. 
Remark 4.3: A similar result to that presented in this propo- 

sition was proven by Hammer [4, Theorem 5.81. Note, how- 
ever, that the result is concerned with a recursive representa- 
tion for a discrete time system C rather than a stable kernel 
representation as is the case here. 

Coprime factorizations of a given system are now defined in 
terms of Bezout identities. Right and left factorizations have 
been previously defined both in terms of Bezout identities; see 
for example [20], [l], and [2], and from a set theoretic point of 
view, see [13], [5] ,  and [9]. In the linear case these definitions 
are equivalent, and in the nonlinear case these definitions 
may be seen to be equivalent for right coprime factorizations. 
However, for left coprime factorizations, the connection is not 
well established, and further, there are weaknesses in the set- 
theoretic approach to the definition of left coprimeness which 
lead us to taking a Bezout-based approach. 

Dejinition 4.4 (Coprime Factorizations): Consider a sys- 
tem C : U --+ Y which has stable right and left factorizations 
as in (40) and (41). Then C = ND-' is a right coprime 
factorization iff there exists a stable operator L : y x U H Z, 
such that 

ization, then it is straightforward to see that 

and the proof is complete. 

(45) 

Similarly, C = &'a is a left coprime factorization iff there 
exists a stable operator T :  Zl + y x U such that 

[B NIT = I z L .  (46) 
U 

Remark4.5: The identity operators of (45) and (46) are 
sometimes replaced by unimodular operators, i.e., stable oper- 
ators with stable inverses; however, it may be seen that identity 
operators may be used without loss of generality. 

Remark4.6: Note that the operator T of (46) may be 
written as [ 21, where Tg : Zl --t y ,  Tu : Zl + U .  Then if 
Ty is invertible, (46) implies that TUT;' gives a right coprime 
factorization of some other operator. 

Thus the existence of a left coprime factorization implies 
the existence of a right factorization for some other operator. 
This is exploited in [ 131 to show that if the plant and controller 
of a stable and well-posed system have left factorizations, then 
they will also have right factorizations. 

This result may also be proven for a well posed and stable 
system {G, K }  with s k r  R { G , K } .  

Proposition 4.7: Consider a system {G, K }  with skr (6) 
which is well posed and generally stable, and that G and K 
are well defined. Then there exist right coprime factorizations 
for G and K 

which satisfy the generalized Bezout identities 

0 
Proof: Consider a feedback system {G, K }  with skr 

R{G,K) which is well posed and generally stable. By Defi- 
nition 2.3, the operator [R{G,K)]- '  exists and is stable, and 
thus the operators TG : ZG -+ Y x U and TK : ZK -+ Y x U 
defined by 

are also be stable. The stable operators 

, 
are now defined by 

By the definitions of TG and TK. the following identities 
hold: 
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To prove the proposition, it only remains to prove that M 
and V are invertible and thus give right factorizations for G 
and K .  

We first prove that M is invertible. Suppose that M were 
not injective, then there exist 21, z2 E Z ,  z1 # z2 such that 
Mzl  = Mz2 = U .  By well definedness of G, there exists a 
unique y E y such that RG(Y, U )  = 0. Thus 

However, by well posedness of the system, this implies that 
z1 = z2. Thus M is injective. Given any U E U ,  there exists 
a y E y such that RG(Y, U )  = 0, and thus a z k  = RK(u, y ) .  
Note that for this ZK, U = Mxk. Thus M is surjective and 
is thus invertible. 

Further for all u E U ,  y = NM-lu satisfies RG(y, U )  = 0, 
and thus y = Gu, and so G = N M - l  is a stable factorization. 
As M and N also satisfy the Bezout identity (49) this is a 
coprime factorization. 

A dual argument exploiting the well definedness of K shows 
that V is also invertible and that K = UV-' is a right coprime 

0 
Remark4.8: The dual result, showing that if the plant 

and controller of a well posed and stable system have right 
factorizations then there will exist left factorizations, holds in 
the linear case where 

factorization, and the proof is complete. 

[v [" -"I 
U M  -U v ' 

However, in the. nonlinear case, the lack of a separability 
property, as in Proposition 4.7, means that this dual result is 
not available for nonlinear systems described by left coprime 
factorizations. 

Thus the results obtained previously for nonlinear left 
coprime factorizations may be duplicated, at least in the 
noise free case, by stable kernel representations. Thus slcr's 
give a generalization of nonlinear left coprime factorizations. 
Furthermore, they may be more easily linked to the state-space 
literature as is explored in the following section. 

V. STATE-SPACE RESULTS 
In this section we present some state-space results which 

were recently obtained by Scherpen and van der Schaft [15]. 
An slcr is derived for a general nonlinear system with a 
state-space description. This overcomes a major weakness 
of the nonlinear left factorization theory, where, except in 
special cases such as [9] and [17], a method for deriving 
left factorizations from a state-space realization of a nonlinear 
operator has not been derived. 

Note that only the essentials of the development are pre- 
sented here, Definition 5.1 and Theorem 5.3 are based on, but 
not directly taken from, the results presented in [15]. 

y which has state- 
space description 

Consider a nonlinear system G :  U 

where U E R", y E WP, and x = ( x l , . - . , xn )  are local 
coordinates for a smooth state-space manifold, M .  G de- 
fines an input-output map G(x0) when the initial condition 
z(0) = zo is specified. It is assumed that the system has an 
equilibrium, without loss of generality this taken is to be zero, 
i.e., f ( 0 )  = 0, and h(0) = 0. 

The equation z = h(x) - y is considered to derive a stable 
kernel representation. This is motivated by the linear theory, 
where transforming the state equations such that the map 
( U ,  y) H z is input to state stable, and x = 0 for y = Gu 
yields a stable left factorization of the original system; see 

A particular form of left coprime factorization, a normalized 
left coprime factorization, is dealt with in [15]. To define this, it 
is necessary to define the notion of a co-inner nonlinear system. 
A detailed consideration of these conditions is beyond the 
scope of this paper, so we work with the following definition 
of left coprimeness. 

DeJnition 5.1 (Left Coprimeness): A left coprime factor- 
ization of a nonlinear system (53) is represented by a system 
of the form 

1101. 

1; 1 k = f"(2) + ij(2) 

z = h(5) - y (54) 

where fl is Lyapunov stable, the input-output map for every 
initial condition is Lz-stable, the dynamics resulting from the 
constraint z = h ( i )  - y = 0, i.e., 

y = i (2)  (55) 

equals (53),  and there exists a right-inverse for (54) 

with f Lyapunov stable. 0 
Remark 5.2: Note that this definition of left coprimeness 

may not be consistent with Definition 4.4 as it is not guaranteed 
that this realization be separable in the sense of Proposition 
4.2. However, it does give connections to Proposition 4.7, as 
the map from s to y is invertible, so that this right-inverse 
to (54) gives the right coprime factorization for some other 
system. 

The following two Hamilton-Jacobi-Bellman equations are 
introduced in relation to (53): 

1 + -h(x)Th(x)  2 = 0, V(0)  = 0 (57) 

? h ( ~ ) ~ h ( z )  = 0, W(0) = 0. (58 )  
2 
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It is assumed that (57) and (58) have smooth nonnegative 
definite solutions, W and V, respectively, at least on a 
neighborhood of 0. (See also Remark 5.6.) 

Based on the solutions to these Hamilton-Jacobi-Bellman 
equations, a left coprime factorization, in the sense of Defini- 
tion 5.1, may be derived for (53). 

Theorem 5.3: Let V and W be smooth positive definite 
solutions (i.e., V ( x )  > 0, W ( x )  > 0, x # 0) to the Hamil- 
ton-Jacobi-Bellman equations (57) and (58), respectively. 
Since s ( 0 )  = 0 and h(0) = 0, there exist smooth matrices 
M ( x )  and C(z), such that 

dW 
dx -(x) = x T M ( x ) ,  h(x) = C(5)x.  (59) 

Assume that M ( z )  is invertible for all IC. Then a left coprime 
factorization of the system (53) is given by 

where f ( x )  - M - ' ( ~ ) C ( z ) ~ h ( z )  is Lyapunov stable with 
Lyapunov function W .  Furthermore, an internally stable right 
inverse of (60) is given by 

Remark 5.4: Furthemore, if V and W are proper (i.e., for 
each c > 0 the set {x E M I 0 5 V ( s )  5 c} is compact, 
and similarly for W )  and x = f(x), y = h(x) is zero-state 
detectable (i.e., y ( t )  = 0, implies that limt,, x ( t )  = 0), then 

globally asymptotically stable. 
Remark 5.5: Note that local invertibility of M-'(x)  can 

be ensured by the usual minimality assumptions on the lin- 
earization of the system at the equilibrium x = 0. In fact, 
this will ensure that M-'(O) > 0 and thus M-' (x)  > 0 
for x close to 0. Another, less restrictive, altemative is to 
replace M-' (x)C(s)  by k ( z ) ,  where k ( s )  is the solution to 

f(.) - M - 1 ( 4 C ( z ) T h ( 4  and f(P) - 9(P)gT(P)$$(P) are 

Wz(.)k(z) = hT(x) .  
ProoJP: From (60) and (61) we deduce 

By integration and using W 2 0 it follows: 

P T  P T  

for all T > 0 and all x(O), implying Lz-stability (in fact, L2- 
gain 5 1). Furthermore, taking U = y = 0, we immediately 
obtain 

implying Lyapunov stability of f - M-'CTh. 
Direct calculation shows that the input-output map of (61) 

followed by (60) for x(0)  = p ( 0 )  is the identity map. 
Furthermore, by using (59) we obtain 

implying Lyapunov stability of f ( p )  - g ( p ) g T ( p ) g ( p )  , 

Remark5.6: If the linearization of (53) at x = 0 is 
controllable and observable, then at least on a neighborhood 
of 2 = 0 there exist smooth positive definite solutions V, W 
to (57) and (58), respectively. 

Remrk5.7: In the case of a linear system (53), the left 
coprime factorization (60) reduces to the state-space represen- 
tation of a normalized left coprime factorization; see Meyer 
and Franklin [SI and Vidyasagar [23]. 

Remark 5.8: In the notation of the previous sections, this 
will be a stable kemel representation for the operator with 
state-space realization (53). 

Thus, at least in a local setting, there exists a procedure for 
deriving a stable kernel representation for a general nonlinear 
system. This may be applied to the results of the previous sec- 
tions, giving state-space version of the Youla parameterization 
for nonlinear systems. 

completing the proof. 0 

VI. CONCLUSION 

In this paper we have developed the theory of stable 
kemel representations for nonlinear systems and demonstrated 
that they are a generalization of left coprime factorizations 
for linear systems. The results presented in Section IV and 
Section 111 demonstrate that in the noise-free case it is possible 
to duplicate all of the currently available results available for 
left factorizations in nonlinear factorization theory simply by 
replacing the left factorizations by stable kernel representa- 
tions. Specifically, the Youla parameterization of all stabilizing 
plant-controller pairs has been shown to result from this 
approach, and the links between right factorizations and left 
factorizations for linear systems seem to be duplicated by the 
links between stable kernel representations and right coprime 
factorizations for nonlinear systems. 

As further support for this approach to nonlinear control, 
a derivation of a stable kernel representation for a general 
nonlinear plant was presented from Scherpen and van der 
Schaft [15]. 

It is expected that results in nonlinear robust control may 
be derived from the results presented in this paper, as was the 
case with the results for nonlinear left coprime factorizations, 
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and that these results may now be translated into a state- 
space domain. It is hoped that the many useful techniques 
which result in the linear theory due to the use of coprime 
factorization analysis may now be derived in a nonlinear form. 
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