430 research outputs found

    Towards the AlexNet Moment for Homomorphic Encryption: HCNN, theFirst Homomorphic CNN on Encrypted Data with GPUs

    Get PDF
    Deep Learning as a Service (DLaaS) stands as a promising solution for cloud-based inference applications. In this setting, the cloud has a pre-learned model whereas the user has samples on which she wants to run the model. The biggest concern with DLaaS is user privacy if the input samples are sensitive data. We provide here an efficient privacy-preserving system by employing high-end technologies such as Fully Homomorphic Encryption (FHE), Convolutional Neural Networks (CNNs) and Graphics Processing Units (GPUs). FHE, with its widely-known feature of computing on encrypted data, empowers a wide range of privacy-concerned applications. This comes at high cost as it requires enormous computing power. In this paper, we show how to accelerate the performance of running CNNs on encrypted data with GPUs. We evaluated two CNNs to classify homomorphically the MNIST and CIFAR-10 datasets. Our solution achieved a sufficient security level (> 80 bit) and reasonable classification accuracy (99%) and (77.55%) for MNIST and CIFAR-10, respectively. In terms of latency, we could classify an image in 5.16 seconds and 304.43 seconds for MNIST and CIFAR-10, respectively. Our system can also classify a batch of images (> 8,000) without extra overhead

    A Survey on Homomorphic Encryption Schemes: Theory and Implementation

    Full text link
    Legacy encryption systems depend on sharing a key (public or private) among the peers involved in exchanging an encrypted message. However, this approach poses privacy concerns. Especially with popular cloud services, the control over the privacy of the sensitive data is lost. Even when the keys are not shared, the encrypted material is shared with a third party that does not necessarily need to access the content. Moreover, untrusted servers, providers, and cloud operators can keep identifying elements of users long after users end the relationship with the services. Indeed, Homomorphic Encryption (HE), a special kind of encryption scheme, can address these concerns as it allows any third party to operate on the encrypted data without decrypting it in advance. Although this extremely useful feature of the HE scheme has been known for over 30 years, the first plausible and achievable Fully Homomorphic Encryption (FHE) scheme, which allows any computable function to perform on the encrypted data, was introduced by Craig Gentry in 2009. Even though this was a major achievement, different implementations so far demonstrated that FHE still needs to be improved significantly to be practical on every platform. First, we present the basics of HE and the details of the well-known Partially Homomorphic Encryption (PHE) and Somewhat Homomorphic Encryption (SWHE), which are important pillars of achieving FHE. Then, the main FHE families, which have become the base for the other follow-up FHE schemes are presented. Furthermore, the implementations and recent improvements in Gentry-type FHE schemes are also surveyed. Finally, further research directions are discussed. This survey is intended to give a clear knowledge and foundation to researchers and practitioners interested in knowing, applying, as well as extending the state of the art HE, PHE, SWHE, and FHE systems.Comment: - Updated. (October 6, 2017) - This paper is an early draft of the survey that is being submitted to ACM CSUR and has been uploaded to arXiv for feedback from stakeholder

    Homomorphic Encryption for Speaker Recognition: Protection of Biometric Templates and Vendor Model Parameters

    Full text link
    Data privacy is crucial when dealing with biometric data. Accounting for the latest European data privacy regulation and payment service directive, biometric template protection is essential for any commercial application. Ensuring unlinkability across biometric service operators, irreversibility of leaked encrypted templates, and renewability of e.g., voice models following the i-vector paradigm, biometric voice-based systems are prepared for the latest EU data privacy legislation. Employing Paillier cryptosystems, Euclidean and cosine comparators are known to ensure data privacy demands, without loss of discrimination nor calibration performance. Bridging gaps from template protection to speaker recognition, two architectures are proposed for the two-covariance comparator, serving as a generative model in this study. The first architecture preserves privacy of biometric data capture subjects. In the second architecture, model parameters of the comparator are encrypted as well, such that biometric service providers can supply the same comparison modules employing different key pairs to multiple biometric service operators. An experimental proof-of-concept and complexity analysis is carried out on the data from the 2013-2014 NIST i-vector machine learning challenge

    Privately Connecting Mobility to Infectious Diseases via Applied Cryptography

    Get PDF
    Human mobility is undisputedly one of the critical factors in infectious disease dynamics. Until a few years ago, researchers had to rely on static data to model human mobility, which was then combined with a transmission model of a particular disease resulting in an epidemiological model. Recent works have consistently been showing that substituting the static mobility data with mobile phone data leads to significantly more accurate models. While prior studies have exclusively relied on a mobile network operator's subscribers' aggregated data, it may be preferable to contemplate aggregated mobility data of infected individuals only. Clearly, naively linking mobile phone data with infected individuals would massively intrude privacy. This research aims to develop a solution that reports the aggregated mobile phone location data of infected individuals while still maintaining compliance with privacy expectations. To achieve privacy, we use homomorphic encryption, zero-knowledge proof techniques, and differential privacy. Our protocol's open-source implementation can process eight million subscribers in one and a half hours. Additionally, we provide a legal analysis of our solution with regards to the EU General Data Protection Regulation.Comment: Added differentlial privacy experiments and new benchmark

    Confidential Boosting with Random Linear Classifiers for Outsourced User-generated Data

    Full text link
    User-generated data is crucial to predictive modeling in many applications. With a web/mobile/wearable interface, a data owner can continuously record data generated by distributed users and build various predictive models from the data to improve their operations, services, and revenue. Due to the large size and evolving nature of users data, data owners may rely on public cloud service providers (Cloud) for storage and computation scalability. Exposing sensitive user-generated data and advanced analytic models to Cloud raises privacy concerns. We present a confidential learning framework, SecureBoost, for data owners that want to learn predictive models from aggregated user-generated data but offload the storage and computational burden to Cloud without having to worry about protecting the sensitive data. SecureBoost allows users to submit encrypted or randomly masked data to designated Cloud directly. Our framework utilizes random linear classifiers (RLCs) as the base classifiers in the boosting framework to dramatically simplify the design of the proposed confidential boosting protocols, yet still preserve the model quality. A Cryptographic Service Provider (CSP) is used to assist the Cloud's processing, reducing the complexity of the protocol constructions. We present two constructions of SecureBoost: HE+GC and SecSh+GC, using combinations of homomorphic encryption, garbled circuits, and random masking to achieve both security and efficiency. For a boosted model, Cloud learns only the RLCs and the CSP learns only the weights of the RLCs. Finally, the data owner collects the two parts to get the complete model. We conduct extensive experiments to understand the quality of the RLC-based boosting and the cost distribution of the constructions. Our results show that SecureBoost can efficiently learn high-quality boosting models from protected user-generated data

    Homomorphic Encryption for Machine Learning in Medicine and Bioinformatics

    Get PDF
    Machine learning techniques are an excellent tool for the medical community to analyzing large amounts of medical and genomic data. On the other hand, ethical concerns and privacy regulations prevent the free sharing of this data. Encryption methods such as fully homomorphic encryption (FHE) provide a method evaluate over encrypted data. Using FHE, machine learning models such as deep learning, decision trees, and naive Bayes have been implemented for private prediction using medical data. FHE has also been shown to enable secure genomic algorithms, such as paternity testing, and secure application of genome-wide association studies. This survey provides an overview of fully homomorphic encryption and its applications in medicine and bioinformatics. The high-level concepts behind FHE and its history are introduced. Details on current open-source implementations are provided, as is the state of FHE for privacy-preserving techniques in machine learning and bioinformatics and future growth opportunities for FHE
    corecore