11,176 research outputs found

    On the Parity Problem in One-Dimensional Cellular Automata

    Full text link
    We consider the parity problem in one-dimensional, binary, circular cellular automata: if the initial configuration contains an odd number of 1s, the lattice should converge to all 1s; otherwise, it should converge to all 0s. It is easy to see that the problem is ill-defined for even-sized lattices (which, by definition, would never be able to converge to 1). We then consider only odd lattices. We are interested in determining the minimal neighbourhood that allows the problem to be solvable for any initial configuration. On the one hand, we show that radius 2 is not sufficient, proving that there exists no radius 2 rule that can possibly solve the parity problem from arbitrary initial configurations. On the other hand, we design a radius 4 rule that converges correctly for any initial configuration and we formally prove its correctness. Whether or not there exists a radius 3 rule that solves the parity problem remains an open problem.Comment: In Proceedings AUTOMATA&JAC 2012, arXiv:1208.249

    General Impossibility of Group Homomorphic Encryption in the Quantum World

    Get PDF
    Group homomorphic encryption represents one of the most important building blocks in modern cryptography. It forms the basis of widely-used, more sophisticated primitives, such as CCA2-secure encryption or secure multiparty computation. Unfortunately, recent advances in quantum computation show that many of the existing schemes completely break down once quantum computers reach maturity (mainly due to Shor's algorithm). This leads to the challenge of constructing quantum-resistant group homomorphic cryptosystems. In this work, we prove the general impossibility of (abelian) group homomorphic encryption in the presence of quantum adversaries, when assuming the IND-CPA security notion as the minimal security requirement. To this end, we prove a new result on the probability of sampling generating sets of finite (sub-)groups if sampling is done with respect to an arbitrary, unknown distribution. Finally, we provide a sufficient condition on homomorphic encryption schemes for our quantum attack to work and discuss its satisfiability in non-group homomorphic cases. The impact of our results on recent fully homomorphic encryption schemes poses itself as an open question.Comment: 20 pages, 2 figures, conferenc

    Lifeworld Analysis

    Full text link
    We argue that the analysis of agent/environment interactions should be extended to include the conventions and invariants maintained by agents throughout their activity. We refer to this thicker notion of environment as a lifeworld and present a partial set of formal tools for describing structures of lifeworlds and the ways in which they computationally simplify activity. As one specific example, we apply the tools to the analysis of the Toast system and show how versions of the system with very different control structures in fact implement a common control structure together with different conventions for encoding task state in the positions or states of objects in the environment.Comment: See http://www.jair.org/ for any accompanying file

    Non-linear Log-Sobolev inequalities for the Potts semigroup and applications to reconstruction problems

    Full text link
    Consider a Markov process with state space [k][k], which jumps continuously to a new state chosen uniformly at random and regardless of the previous state. The collection of transition kernels (indexed by time t0t\ge 0) is the Potts semigroup. Diaconis and Saloff-Coste computed the maximum of the ratio of the relative entropy and the Dirichlet form obtaining the constant α2\alpha_2 in the 22-log-Sobolev inequality (22-LSI). In this paper, we obtain the best possible non-linear inequality relating entropy and the Dirichlet form (i.e., pp-NLSI, p1p\ge1). As an example, we show α1=1+1+o(1)logk\alpha_1 = 1+\frac{1+o(1)}{\log k}. The more precise NLSIs have been shown by Polyanskiy and Samorodnitsky to imply various geometric and Fourier-analytic results. Beyond the Potts semigroup, we also analyze Potts channels -- Markov transition matrices [k]×[k][k]\times [k] constant on and off diagonal. (Potts semigroup corresponds to a (ferromagnetic) subset of matrices with positive second eigenvalue). By integrating the 11-NLSI we obtain the new strong data processing inequality (SDPI), which in turn allows us to improve results on reconstruction thresholds for Potts models on trees. A special case is the problem of reconstructing color of the root of a kk-colored tree given knowledge of colors of all the leaves. We show that to have a non-trivial reconstruction probability the branching number of the tree should be at least logklogklog(k1)=(1o(1))klogk.\frac{\log k}{\log k - \log(k-1)} = (1-o(1))k\log k. This extends previous results (of Sly and Bhatnagar et al.) to general trees, and avoids the need for any specialized arguments. Similarly, we improve the state-of-the-art on reconstruction threshold for the stochastic block model with kk balanced groups, for all k3k\ge 3. These improvements advocate information-theoretic methods as a useful complement to the conventional techniques originating from the statistical physics

    How to Write a Proof: Patterns of Justification in Strategic Documents for Educational Reform

    Get PDF
    Writing strategic documents is a major practice of many actors striving to see their educational ideas realised in the curriculum. In these documents, arguments are systematically developed to create the legitimacy of a new educational goal and competence to make claims about it. Through a qualitative analysis of the writing strategies used in these texts, I show how two of the main actors in the Czech educational discourse have developed a proof that a new educational goal is needed. I draw on the connection of the relational approach in the sociology of education with Lyotard’s analytical semantics of instances in the event. The comparison of the writing strategies in the two documents reveals differences in the formation of a particular pattern of justification. In one case the texts function as a herald of pure reality, and in the other case as a messenger of other witnesses. This reveals different regimens of proof, although both of them were written as prescriptive directives – normative models of the educational world

    Approximately Optimal Mechanism Design: Motivation, Examples, and Lessons Learned

    Full text link
    Optimal mechanism design enjoys a beautiful and well-developed theory, and also a number of killer applications. Rules of thumb produced by the field influence everything from how governments sell wireless spectrum licenses to how the major search engines auction off online advertising. There are, however, some basic problems for which the traditional optimal mechanism design approach is ill-suited --- either because it makes overly strong assumptions, or because it advocates overly complex designs. The thesis of this paper is that approximately optimal mechanisms allow us to reason about fundamental questions that seem out of reach of the traditional theory. This survey has three main parts. The first part describes the approximately optimal mechanism design paradigm --- how it works, and what we aim to learn by applying it. The second and third parts of the survey cover two case studies, where we instantiate the general design paradigm to investigate two basic questions. In the first example, we consider revenue maximization in a single-item auction with heterogeneous bidders. Our goal is to understand if complexity --- in the sense of detailed distributional knowledge --- is an essential feature of good auctions for this problem, or alternatively if there are simpler auctions that are near-optimal. The second example considers welfare maximization with multiple items. Our goal here is similar in spirit: when is complexity --- in the form of high-dimensional bid spaces --- an essential feature of every auction that guarantees reasonable welfare? Are there interesting cases where low-dimensional bid spaces suffice?Comment: Based on a talk given by the author at the 15th ACM Conference on Economics and Computation (EC), June 201
    corecore