43,488 research outputs found

    Landau damping in the multiscale Vlasov theory

    Full text link
    Vlasov kinetic theory is extended by adopting an extra one particle distribution function as an additional state variable characterizing the micro-turbulence internal structure. The extended Vlasov equation keeps the reversibility, the Hamiltonian structure, and the entropy conservation of the original Vlasov equation. In the setting of the extended Vlasov theory we then argue that the Fokker-Planck type damping in the velocity dependence of the extra distribution function induces the Landau damping. The same type of extension is made also in the setting of fluid mechanics

    Stochastic Inflation Revisited: Non-Slow Roll Statistics and DBI Inflation

    Full text link
    Stochastic inflation describes the global structure of the inflationary universe by modeling the super-Hubble dynamics as a system of matter fields coupled to gravity where the sub-Hubble field fluctuations induce a stochastic force into the equations of motion. The super-Hubble dynamics are ultralocal, allowing us to neglect spatial derivatives and treat each Hubble patch as a separate universe. This provides a natural framework in which to discuss probabilities on the space of solutions and initial conditions. In this article we derive an evolution equation for this probability for an arbitrary class of matter systems, including DBI and k-inflationary models, and discover equilibrium solutions that satisfy detailed balance. Our results are more general than those derived assuming slow roll or a quasi-de Sitter geometry, and so are directly applicable to models that do not satisfy the usual slow roll conditions. We discuss in general terms the conditions for eternal inflation to set in, and we give explicit numerical solutions of highly stochastic, quasi-stationary trajectories in the relativistic DBI regime. Finally, we show that the probability for stochastic/thermal tunneling can be significantly enhanced relative to the Hawking-Moss instanton result due to relativistic DBI effects.Comment: 38 pages, 2 figures. v3: minor revisions; version accepted into JCA

    Coupled Hartree-Fock-Bogoliubov kinetic equations for a trapped Bose gas

    Full text link
    Using the Kadanoff-Baym non-equilibrium Green's function formalism, we derive the self-consistent Hartree-Fock-Bogoliubov (HFB) collisionless kinetic equations and the associated equation of motion for the condensate wavefunction for a trapped Bose-condensed gas. Our work generalizes earlier work by Kane and Kadanoff (KK) for a uniform Bose gas. We include the off-diagonal (anomalous) pair correlations, and thus we have to introduce an off-diagonal distribution function in addition to the normal (diagonal) distribution function. This results in two coupled kinetic equations. If the off-diagonal distribution function can be neglected as a higher-order contribution, we obtain the semi-classical kinetic equation recently used by Zaremba, Griffin and Nikuni (based on the simpler Popov approximation). We discuss the static local equilibrium solution of our coupled HFB kinetic equations within the semi-classical approximation. We also verify that a solution is the rigid in-phase oscillation of the equilibrium condensate and non-condensate density profiles, oscillating with the trap frequency.Comment: 25 page

    Matter Wave Turbulence: Beyond Kinetic Scaling

    Full text link
    Turbulent scaling phenomena are studied in an ultracold Bose gas away from thermal equilibrium. Fixed points of the dynamical evolution are characterized in terms of universal scaling exponents of correlation functions. The scaling behavior is determined analytically in the framework of quantum field theory, using a nonperturbative approximation of the two-particle irreducible effective action. While perturbative Kolmogorov scaling is recovered at higher energies, scaling solutions with anomalously large exponents arise in the infrared regime of the turbulence spectrum. The extraordinary enhancement in the momentum dependence of long-range correlations could be experimentally accessible in dilute ultracold atomic gases. Such experiments have the potential to provide insight into dynamical phenomena directly relevant also in other present-day focus areas like heavy-ion collisions and early-universe cosmology.Comment: 18 pages, 2 figure
    corecore