4,212 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Maximum Multipath Routing Throughput in Multirate Wireless Mesh Networks

    Full text link
    In this paper, we consider the problem of finding the maximum routing throughput between any pair of nodes in an arbitrary multirate wireless mesh network (WMN) using multiple paths. Multipath routing is an efficient technique to maximize routing throughput in WMN, however maximizing multipath routing throughput is a NP-complete problem due to the shared medium for electromagnetic wave transmission in wireless channel, inducing collision-free scheduling as part of the optimization problem. In this work, we first provide problem formulation that incorporates collision-free schedule, and then based on this formulation we design an algorithm with search pruning that jointly optimizes paths and transmission schedule. Though suboptimal, compared to the known optimal single path flow, we demonstrate that an efficient multipath routing scheme can increase the routing throughput by up to 100% for simple WMNs.Comment: This paper has been accepted for publication in IEEE 80th Vehicular Technology Conference, VTC-Fall 201

    Algorithms for Fast Aggregated Convergecast in Sensor Networks

    Get PDF
    Fast and periodic collection of aggregated data is of considerable interest for mission-critical and continuous monitoring applications in sensor networks. In the many-to-one communication paradigm, referred to as convergecast, we focus on applications wherein data packets are aggregated at each hop en-route to the sink along a tree-based routing topology, and address the problem of minimizing the convergecast schedule length by utilizing multiple frequency channels. The primary hindrance in minimizing the schedule length is the presence of interfering links. We prove that it is NP-complete to determine whether all the interfering links in an arbitrary network can be removed using at most a constant number of frequencies. We give a sufficient condition on the number of frequencies for which all the interfering links can be removed, and propose a polynomial time algorithm that minimizes the schedule length in this case. We also prove that minimizing the schedule length for a given number of frequencies on an arbitrary network is NP-complete, and describe a greedy scheme that gives a constant factor approximation on unit disk graphs. When the routing tree is not given as an input to the problem, we prove that a constant factor approximation is still achievable for degree-bounded trees. Finally, we evaluate our algorithms through simulations and compare their performance under different network parameters
    • 

    corecore