8 research outputs found

    New feature extraction approach for epileptic EEG signal detection using time-frequency distributions

    Get PDF
    10 pages, 6 figures.-- PMID: 20217264.This paper describes a new method to identify seizures in electroencephalogram (EEG) signals using feature extraction in time–frequency distributions (TFDs). Particularly, the method extracts features from the Smoothed Pseudo Wigner-Ville distribution using tracks estimated from the McAulay-Quatieri sinusoidal model. The proposed features are the length, frequency, and energy of the principal track. We evaluate the proposed scheme using several datasets and we compute sensitivity, specificity, F-score, receiver operating characteristics (ROC) curve, and percentile bootstrap confidence to conclude that the proposed scheme generalizes well and is a suitable approach for automatic seizure detection at a moderate cost, also opening the possibility of formulating new criteria to detect, classify or analyze abnormal EEGs.This work has been funded by the Spain CICYT grant TEC2008-02473.Publicad

    Feature Extraction and Classification of EHG between Pregnancy and Labour Group Using Hilbert-Huang Transform and Extreme Learning Machine

    Get PDF
    Preterm birth (PTB) is the leading cause of perinatal mortality and long-term morbidity, which results in significant health and economic problems. The early detection of PTB has great significance for its prevention. The electrohysterogram (EHG) related to uterine contraction is a noninvasive, real-time, and automatic novel technology which can be used to detect, diagnose, or predict PTB. This paper presents a method for feature extraction and classification of EHG between pregnancy and labour group, based on Hilbert-Huang transform (HHT) and extreme learning machine (ELM). For each sample, each channel was decomposed into a set of intrinsic mode functions (IMFs) using empirical mode decomposition (EMD). Then, the Hilbert transform was applied to IMF to obtain analytic function. The maximum amplitude of analytic function was extracted as feature. The identification model was constructed based on ELM. Experimental results reveal that the best classification performance of the proposed method can reach an accuracy of 88.00%, a sensitivity of 91.30%, and a specificity of 85.19%. The area under receiver operating characteristic (ROC) curve is 0.88. Finally, experimental results indicate that the method developed in this work could be effective in the classification of EHG between pregnancy and labour group

    A Biologically Inspired Approach to Frequency Domain Feature Extraction for EEG Classification

    Get PDF
    Classification of electroencephalogram (EEG) signal is important in mental decoding for brain-computer interfaces (BCI). We introduced a feature extraction approach based on frequency domain analysis to improve the classification performance on different mental tasks using single-channel EEG. This biologically inspired method extracts the most discriminative spectral features from power spectral densities (PSDs) of the EEG signals. We applied our method on a dataset of six subjects who performed five different imagination tasks: (i) resting state, (ii) mental arithmetic, (iii) imagination of left hand movement, (iv) imagination of right hand movement, and (v) imagination of letter “A.” Pairwise and multiclass classifications were performed in single EEG channel using Linear Discriminant Analysis and Support Vector Machines. Our method produced results (mean classification accuracy of 83.06% for binary classification and 91.85% for multiclassification) that are on par with the state-of-the-art methods, using single-channel EEG with low computational cost. Among all task pairs, mental arithmetic versus letter imagination yielded the best result (mean classification accuracy of 90.29%), indicating that this task pair could be the most suitable pair for a binary class BCI. This study contributes to the development of single-channel BCI, as well as finding the best task pair for user defined applications

    Wavelet-based Gaussian-mixture hidden Markov model for the detection of multistage seizure dynamics: A proof-of-concept study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epilepsy is a common neurological disorder characterized by recurrent electrophysiological activities, known as seizures. Without the appropriate detection strategies, these seizure episodes can dramatically affect the quality of life for those afflicted. The rationale of this study is to develop an unsupervised algorithm for the detection of seizure states so that it may be implemented along with potential intervention strategies.</p> <p>Methods</p> <p>Hidden Markov model (HMM) was developed to interpret the state transitions of the <it>in vitro </it>rat hippocampal slice local field potentials (LFPs) during seizure episodes. It can be used to estimate the probability of state transitions and the corresponding characteristics of each state. Wavelet features were clustered and used to differentiate the electrophysiological characteristics at each corresponding HMM states. Using unsupervised training method, the HMM and the clustering parameters were obtained simultaneously. The HMM states were then assigned to the electrophysiological data using expert guided technique. Minimum redundancy maximum relevance (mRMR) analysis and Akaike Information Criterion (AICc) were applied to reduce the effect of over-fitting. The sensitivity, specificity and optimality index of chronic seizure detection were compared for various HMM topologies. The ability of distinguishing early and late tonic firing patterns prior to chronic seizures were also evaluated.</p> <p>Results</p> <p>Significant improvement in state detection performance was achieved when additional wavelet coefficient rates of change information were used as features. The final HMM topology obtained using mRMR and AICc was able to detect non-ictal (interictal), early and late tonic firing, chronic seizures and postictal activities. A mean sensitivity of 95.7%, mean specificity of 98.9% and optimality index of 0.995 in the detection of chronic seizures was achieved. The detection of early and late tonic firing was validated with experimental intracellular electrical recordings of seizures.</p> <p>Conclusions</p> <p>The HMM implementation of a seizure dynamics detector is an improvement over existing approaches using visual detection and complexity measures. The subjectivity involved in partitioning the observed data prior to training can be eliminated. It can also decipher the probabilities of seizure state transitions using the magnitude and rate of change wavelet information of the LFPs.</p
    corecore