2,818 research outputs found

    Principal Solutions Revisited

    Full text link
    The main objective of this paper is to identify principal solutions associated with Sturm-Liouville operators on arbitrary open intervals (a,b)R(a,b) \subseteq \mathbb{R}, as introduced by Leighton and Morse in the scalar context in 1936 and by Hartman in the matrix-valued situation in 1957, with Weyl-Titchmarsh solutions, as long as the underlying Sturm-Liouville differential expression is nonoscillatory (resp., disconjugate or bounded from below near an endpoint) and in the limit point case at the endpoint in question. In addition, we derive an explicit formula for Weyl-Titchmarsh functions in this case (the latter appears to be new in the matrix-valued context).Comment: 27 pages, expanded Sect. 2, added reference

    Abstract kinetic equations with positive collision operators

    Full text link
    We consider "forward-backward" parabolic equations in the abstract form Jdψ/dx+Lψ=0Jd \psi / d x + L \psi = 0, 0<x<τ 0< x < \tau \leq \infty, where JJ and LL are operators in a Hilbert space HH such that J=J=J1J=J^*=J^{-1}, L=L0L=L^* \geq 0, and kerL=0\ker L = 0. The following theorem is proved: if the operator B=JLB=JL is similar to a self-adjoint operator, then associated half-range boundary problems have unique solutions. We apply this theorem to corresponding nonhomogeneous equations, to the time-independent Fokker-Plank equation μψx(x,μ)=b(μ)2ψμ2(x,μ) \mu \frac {\partial \psi}{\partial x} (x,\mu) = b(\mu) \frac {\partial^2 \psi}{\partial \mu^2} (x, \mu), 0<x<τ 0<x<\tau, μR \mu \in \R, as well as to other parabolic equations of the "forward-backward" type. The abstract kinetic equation Tdψ/dx=Aψ(x)+f(x) T d \psi/dx = - A \psi (x) + f(x), where T=TT=T^* is injective and AA satisfies a certain positivity assumption, is considered also.Comment: 20 pages, LaTeX2e, version 2, references have been added, changes in the introductio

    Direct and inverse spectral theorems for a class of canonical systems with two singular endpoints

    Full text link
    Part I of this paper deals with two-dimensional canonical systems y(x)=yJH(x)y(x)y'(x)=yJH(x)y(x), x(a,b)x\in(a,b), whose Hamiltonian HH is non-negative and locally integrable, and where Weyl's limit point case takes place at both endpoints aa and bb. We investigate a class of such systems defined by growth restrictions on H towards a. For example, Hamiltonians on (0,)(0,\infty) of the form H(x):=(xα001)H(x):=\begin{pmatrix}x^{-\alpha}&0\\ 0&1\end{pmatrix} where α<2\alpha<2 are included in this class. We develop a direct and inverse spectral theory parallel to the theory of Weyl and de Branges for systems in the limit circle case at aa. Our approach proceeds via - and is bound to - Pontryagin space theory. It relies on spectral theory and operator models in such spaces, and on the theory of de Branges Pontryagin spaces. The main results concerning the direct problem are: (1) showing existence of regularized boundary values at aa; (2) construction of a singular Weyl coefficient and a scalar spectral measure; (3) construction of a Fourier transform and computation of its action and the action of its inverse as integral transforms. The main results for the inverse problem are: (4) characterization of the class of measures occurring above (positive Borel measures with power growth at ±\pm\infty); (5) a global uniqueness theorem (if Weyl functions or spectral measures coincide, Hamiltonians essentially coincide); (6) a local uniqueness theorem. In Part II of the paper the results of Part I are applied to Sturm--Liouville equations with singular coefficients. We investigate classes of equations without potential (in particular, equations in impedance form) and Schr\"odinger equations, where coefficients are assumed to be singular but subject to growth restrictions. We obtain corresponding direct and inverse spectral theorems

    Optimal partitioning of an interval and applications to Sturm-Liouville eigenvalues

    Full text link
    We study the optimal partitioning of a (possibly unbounded) interval of the real line into nn subintervals in order to minimize the maximum of certain set-functions, under rather general assumptions such as continuity, monotonicity, and a Radon-Nikodym property. We prove existence and uniqueness of a solution to this minimax partition problem, showing that the values of the set-functions on the intervals of any optimal partition must coincide. We also investigate the asymptotic distribution of the optimal partitions as nn tends to infinity. Several examples of set-functions fit in this framework, including measures, weighted distances and eigenvalues. We recover, in particular, some classical results of Sturm-Liouville theory: the asymptotic distribution of the zeros of the eigenfunctions, the asymptotics of the eigenvalues, and the celebrated Weyl law on the asymptotics of the counting function

    What is the optimal shape of a fin for one dimensional heat conduction?

    Get PDF
    This article is concerned with the shape of small devices used to control the heat flowing between a solid and a fluid phase, usually called \textsl{fin}. The temperature along a fin in stationary regime is modeled by a one-dimensional Sturm-Liouville equation whose coefficients strongly depend on its geometrical features. We are interested in the following issue: is there any optimal shape maximizing the heat flux at the inlet of the fin? Two relevant constraints are examined, by imposing either its volume or its surface, and analytical nonexistence results are proved for both problems. Furthermore, using specific perturbations, we explicitly compute the optimal values and construct maximizing sequences. We show in particular that the optimal heat flux at the inlet is infinite in the first case and finite in the second one. Finally, we provide several extensions of these results for more general models of heat conduction, as well as several numerical illustrations

    Two-parameter Sturm-Liouville problems

    Full text link
    This paper deals with the computation of the eigenvalues of two-parameter Sturm- Liouville (SL) problems using the Regularized Sampling Method, a method which has been effective in computing the eigenvalues of broad classes of SL problems (Singular, Non-Self-Adjoint, Non-Local, Impulsive,...). We have shown, in this work that it can tackle two-parameter SL problems with equal ease. An example was provided to illustrate the effectiveness of the method.Comment: 9 page
    corecore