The main objective of this paper is to identify principal solutions
associated with Sturm-Liouville operators on arbitrary open intervals (a,b)⊆R, as introduced by Leighton and Morse in the scalar
context in 1936 and by Hartman in the matrix-valued situation in 1957, with
Weyl-Titchmarsh solutions, as long as the underlying Sturm-Liouville
differential expression is nonoscillatory (resp., disconjugate or bounded from
below near an endpoint) and in the limit point case at the endpoint in
question. In addition, we derive an explicit formula for Weyl-Titchmarsh
functions in this case (the latter appears to be new in the matrix-valued
context).Comment: 27 pages, expanded Sect. 2, added reference