21,108 research outputs found

    Neuroimaging of structural pathology and connectomics in traumatic brain injury: Toward personalized outcome prediction.

    Get PDF
    Recent contributions to the body of knowledge on traumatic brain injury (TBI) favor the view that multimodal neuroimaging using structural and functional magnetic resonance imaging (MRI and fMRI, respectively) as well as diffusion tensor imaging (DTI) has excellent potential to identify novel biomarkers and predictors of TBI outcome. This is particularly the case when such methods are appropriately combined with volumetric/morphometric analysis of brain structures and with the exploration of TBI-related changes in brain network properties at the level of the connectome. In this context, our present review summarizes recent developments on the roles of these two techniques in the search for novel structural neuroimaging biomarkers that have TBI outcome prognostication value. The themes being explored cover notable trends in this area of research, including (1) the role of advanced MRI processing methods in the analysis of structural pathology, (2) the use of brain connectomics and network analysis to identify outcome biomarkers, and (3) the application of multivariate statistics to predict outcome using neuroimaging metrics. The goal of the review is to draw the community's attention to these recent advances on TBI outcome prediction methods and to encourage the development of new methodologies whereby structural neuroimaging can be used to identify biomarkers of TBI outcome

    A Deep Dive into Understanding Tumor Foci Classification using Multiparametric MRI Based on Convolutional Neural Network

    Full text link
    Deep learning models have had a great success in disease classifications using large data pools of skin cancer images or lung X-rays. However, data scarcity has been the roadblock of applying deep learning models directly on prostate multiparametric MRI (mpMRI). Although model interpretation has been heavily studied for natural images for the past few years, there has been a lack of interpretation of deep learning models trained on medical images. This work designs a customized workflow for the small and imbalanced data set of prostate mpMRI where features were extracted from a deep learning model and then analyzed by a traditional machine learning classifier. In addition, this work contributes to revealing how deep learning models interpret mpMRI for prostate cancer patients stratification

    Axon diameters and myelin content modulate microscopic fractional anisotropy at short diffusion times in fixed rat spinal cord

    Full text link
    Mapping tissue microstructure accurately and noninvasively is one of the frontiers of biomedical imaging. Diffusion Magnetic Resonance Imaging (MRI) is at the forefront of such efforts, as it is capable of reporting on microscopic structures orders of magnitude smaller than the voxel size by probing restricted diffusion. Double Diffusion Encoding (DDE) and Double Oscillating Diffusion Encoding (DODE) in particular, are highly promising for their ability to report on microscopic fractional anisotropy ({\mu}FA), a measure of the pore anisotropy in its own eigenframe, irrespective of orientation distribution. However, the underlying correlates of {\mu}FA have insofar not been studied. Here, we extract {\mu}FA from DDE and DODE measurements at ultrahigh magnetic field of 16.4T in the aim to probe fixed rat spinal cord microstructure. We further endeavor to correlate {\mu}FA with Myelin Water Fraction (MWF) derived from multiexponential T2 relaxometry, as well as with literature-based spatially varying axonal diameters. In addition, a simple new method is presented for extracting unbiased {\mu}FA from three measurements at different b-values. Our findings reveal strong anticorrelations between {\mu}FA (derived from DODE) and axon diameter in the distinct spinal cord tracts; a moderate correlation was also observed between {\mu}FA derived from DODE and MWF. These findings suggest that axonal membranes strongly modulate {\mu}FA, which - owing to its robustness towards orientation dispersion effects - reflects axon diameter much better than its typical FA counterpart. The {\mu}FA exhibited modulations when measured via oscillating or blocked gradients, suggesting selective probing of different parallel path lengths and providing insight into how those modulate {\mu}FA metrics. Our findings thus shed light into the underlying microstructural correlates of {\mu}FA and are (...

    Probing white-matter microstructure with higher-order diffusion tensors and susceptibility tensor MRI.

    Get PDF
    Diffusion MRI has become an invaluable tool for studying white matter microstructure and brain connectivity. The emergence of quantitative susceptibility mapping and susceptibility tensor imaging (STI) has provided another unique tool for assessing the structure of white matter. In the highly ordered white matter structure, diffusion MRI measures hindered water mobility induced by various tissue and cell membranes, while susceptibility sensitizes to the molecular composition and axonal arrangement. Integrating these two methods may produce new insights into the complex physiology of white matter. In this study, we investigated the relationship between diffusion and magnetic susceptibility in the white matter. Experiments were conducted on phantoms and human brains in vivo. Diffusion properties were quantified with the diffusion tensor model and also with the higher order tensor model based on the cumulant expansion. Frequency shift and susceptibility tensor were measured with quantitative susceptibility mapping and susceptibility tensor imaging. These diffusion and susceptibility quantities were compared and correlated in regions of single fiber bundles and regions of multiple fiber orientations. Relationships were established with similarities and differences identified. It is believed that diffusion MRI and susceptibility MRI provide complementary information of the microstructure of white matter. Together, they allow a more complete assessment of healthy and diseased brains
    • …
    corecore