235 research outputs found

    Secure data sharing in cloud and IoT by leveraging attribute-based encryption and blockchain

    Get PDF
    “Data sharing is very important to enable different types of cloud and IoT-based services. For example, organizations migrate their data to the cloud and share it with employees and customers in order to enjoy better fault-tolerance, high-availability, and scalability offered by the cloud. Wearable devices such as smart watch share user’s activity, location, and health data (e.g., heart rate, ECG) with the service provider for smart analytic. However, data can be sensitive, and the cloud and IoT service providers cannot be fully trusted with maintaining the security, privacy, and confidentiality of the data. Hence, new schemes and protocols are required to enable secure data sharing in the cloud and IoT. This work outlines our research contribution towards secure data sharing in the cloud and IoT. For secure data sharing in the cloud, this work proposes several novel attribute-based encryption schemes. The core contributions to this end are efficient revocation, prevention of collusion attacks, and multi-group support. On the other hand, for secure data sharing in IoT, a permissioned blockchain-based access control system has been proposed. The system can be used to enforce fine-grained access control on IoT data where the access control decision is made by the blockchain-based on the consensus of the participating nodes”--Abstract, page iv

    Data Access in Multiauthority Cloud Storage: Expressive and Revocable Data Control System

    Get PDF
    ABSTRACT Cloud computing is rising enormously due to its advantages and the adaptable storage services being provided by it. Because of this, the number of users has reached the top level. The users will share the sensitive data through the cloud. Furthermore, the user can\u27t trust the untrusted cloud server. Subsequently, the data access control has turned out to be extremely challenging in cloud storage framework. In existing work, revocable data access control scheme proposed for multi-authority cloud storage frameworks which supports the access control in light of the authority control. The authorized users who have desirable attributes given by various authorities can access the data. However, it couldn\u27t control the attacks which can happen to the authorized user who is not having desirable attributes. In this work, they propose a new algorithm named Improved Security Data Access Control which beats the issue exists in the existing work. And furthermore, incorporates the efficient attribute revocation strategy for multi-authority cloud storage. Keywords: Access control, multi-authority, attribute revocation, cloud storage

    Sharing in the Rain: Secure and Efficient Data Sharing for the Cloud

    Get PDF
    Cloud storage has rapidly become a cornerstone of many businesses and has moved from an early adopters stage to an early majority, where we typically see explosive deployments. As companies rush to join the cloud revolution, it has become vital to create the necessary tools that will effectively protect users' data from unauthorized access. Nevertheless, sharing data between multiple users' under the same domain in a secure and efficient way is not trivial. In this paper, we propose Sharing in the Rain – a protocol that allows cloud users' to securely share their data based on predefined policies. The proposed protocol is based on Attribute-Based Encryption (ABE) and allows users' to encrypt data based on certain policies and attributes. Moreover, we use a Key-Policy Attribute-Based technique through which access revocation is optimized. More precisely, we show how to securely and efficiently remove access to a file, for a certain user that is misbehaving or is no longer part of a user group, without having to decrypt and re-encrypt the original data with a new key or a new policy

    An Innovative Approach for Enhancing Cloud Data Security using Attribute based Encryption and ECC

    Get PDF
    Cloud computing is future for upcoming generations. Nowadays various companies are looking to use Cloud computing services, as it may benefit them in terms of price, reliability and unlimited storage capacity. Providing security and privacy protection for the cloud data is one of the most difficult task in recent days. One of the measures which customers can take care of is to encrypt their data before it is stored on the cloud. Recently, the attribute-based encryption (ABE) is a popular solution to achieve secure data transmission and storage in the cloud computing. In this paper, an efficient hybrid approach using attribute-based encryption scheme and ECC is proposed to enhance the security and privacy issues in cloud. Here, the proposed scheme is based on Cipher text-Policy Attribute Based Encryption (CP-ABE) without bilinear pairing operations. In this approach, the computation-intensive bilinear pairing operation is replaced by the scalar multiplication on elliptic curves. Experimental results show that the proposed scheme has good cryptographic properties, and high security level which depends in the difficulty to solve the discrete logarithm problem on elliptic curves (ECDLP)

    Modern Family: A Revocable Hybrid Encryption Scheme Based on Attribute-Based Encryption, Symmetric Searchable Encryption and SGX

    Get PDF
    Secure cloud storage is considered as one of the most important issues that both businesses and end-users take into account before moving their private data to the cloud. Lately, we have seen some interesting approaches that are based either on the promising concept of Symmetric Searchable Encryption (SSE) or on the well-studied field of Attribute-Based Encryption (ABE). In the first case, researchers are trying to design protocols where users' data will be protected from both internal and external attacks without paying the necessary attention to the problem of user revocation. In the second case, existing approaches address the problem of revocation. However, the overall efficiency of these systems is compromised since the proposed protocols are solely based on ABE schemes and the size of the produced ciphertexts and the time required to decrypt grows with the complexity of the access formula. In this paper, we propose a hybrid encryption scheme that combines both SSE and ABE by utilizing the advantages of both these techniques. In contrast to many approaches, we design a revocation mechanism that is completely separated from the ABE scheme and solely based on the functionality offered by SGX

    HealthShare: Using Attribute-Based Encryption for Secure Data Sharing Between Multiple Clouds

    Get PDF
    In this invited paper, we propose HealthShare - a forward-looking approach for secure ehealth data sharing between multiple organizations that are hosting patients' data in different clouds. The proposed protocol is based on a Revocable Key-Policy Attribute-Based Encryption scheme and allows users to share encrypted health records based on a policy that has been defined by the data owner (i.e. patient, a member of the hospital, etc). Furthermore, access to a malicious or compromised user/organization can be easily revoked without the need to generate fresh encryption keys

    The Cloud we Share: Access Control on Symmetrically Encrypted Data in Untrusted Clouds

    Get PDF
    Along with the rapid growth of cloud environments, rises the problem of secure data storage. – a problem that both businesses and end-users take into consideration before moving their data online. Recently, a lot of solutions have been proposed based either on Symmetric Searchable Encryption (SSE) or Attribute-Based Encryption (ABE). SSE is an encryption technique that offers security against both internal and external attacks. However, since in an SSE scheme, a single key is used to encrypt everything, revoking a user would imply downloading the entire encrypted database and re-encrypt it with a fresh key. On the other hand, in an ABE scheme, the problem of revocation can be addressed. Unfortunately, though, the proposed solutions are based on the properties of the underlying ABE scheme and hence, the revocation costs grow along with the complexity of the policies. To this end, we use these two cryptographic techniques that squarely fit cloud-based environments to design a hybrid encryption scheme based on ABE and SSE in such a way that we utilize the best out of both of them. Moreover, we exploit the functionalities offered by Intel’s SGX to design a revocation mechanism and an access control one, that are agnostic to the cryptographic primitives used in our construction

    Revocable Key-Aggregate Cryptosystem for Data Sharing in Cloud

    Get PDF
    With the rapid development of network and storage technology, cloud storage has become a new service mode, while data sharing and user revocation are important functions in the cloud storage. Therefore, according to the characteristics of cloud storage, a revocable key-aggregate encryption scheme is put forward based on subset-cover framework. The proposed scheme not only has the key-aggregate characteristics, which greatly simplifies the user’s key management, but also can revoke user access permissions, realizing the flexible and effective access control. When user revocation occurs, it allows cloud server to update the ciphertext so that revoked users can not have access to the new ciphertext, while nonrevoked users do not need to update their private keys. In addition, a verification mechanism is provided in the proposed scheme, which can verify the updated ciphertext and ensure that the user revocation is performed correctly. Compared with the existing schemes, this scheme can not only reduce the cost of key management and storage, but also realize user revocation and achieve user’s access control efficiently. Finally, the proposed scheme can be proved to be selective chosen-plaintext security in the standard model
    • …
    corecore