1,079 research outputs found

    Cryptography from tensor problems

    Get PDF
    We describe a new proposal for a trap-door one-way function. The new proposal belongs to the "multivariate quadratic" family but the trap-door is different from existing methods, and is simpler

    On Equivalence of Known Families of APN Functions in Small Dimensions

    Full text link
    In this extended abstract, we computationally check and list the CCZ-inequivalent APN functions from infinite families on F2n\mathbb{F}_2^n for n from 6 to 11. These functions are selected with simplest coefficients from CCZ-inequivalent classes. This work can simplify checking CCZ-equivalence between any APN function and infinite APN families.Comment: This paper is already in "PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

    Quantum Algorithms for Boolean Equation Solving and Quantum Algebraic Attack on Cryptosystems

    Get PDF
    Decision of whether a Boolean equation system has a solution is an NPC problem and finding a solution is NP hard. In this paper, we present a quantum algorithm to decide whether a Boolean equation system FS has a solution and compute one if FS does have solutions with any given success probability. The runtime complexity of the algorithm is polynomial in the size of FS and the condition number of FS. As a consequence, we give a polynomial-time quantum algorithm for solving Boolean equation systems if their condition numbers are small, say polynomial in the size of FS. We apply our quantum algorithm for solving Boolean equations to the cryptanalysis of several important cryptosystems: the stream cipher Trivum, the block cipher AES, the hash function SHA-3/Keccak, and the multivariate public key cryptosystems, and show that they are secure under quantum algebraic attack only if the condition numbers of the corresponding equation systems are large. This leads to a new criterion for designing cryptosystems that can against the attack of quantum computers: their corresponding equation systems must have large condition numbers

    Homomorphic public-key cryptosystems and encrypting boolean circuits

    Full text link
    In this paper homomorphic cryptosystems are designed for the first time over any finite group. Applying Barrington's construction we produce for any boolean circuit of the logarithmic depth its encrypted simulation of a polynomial size over an appropriate finitely generated group

    On the Design of Cryptographic Primitives

    Full text link
    The main objective of this work is twofold. On the one hand, it gives a brief overview of the area of two-party cryptographic protocols. On the other hand, it proposes new schemes and guidelines for improving the practice of robust protocol design. In order to achieve such a double goal, a tour through the descriptions of the two main cryptographic primitives is carried out. Within this survey, some of the most representative algorithms based on the Theory of Finite Fields are provided and new general schemes and specific algorithms based on Graph Theory are proposed
    • …
    corecore