
ar
X

iv
:1

71
2.

06
23

9v
1

 [
qu

an
t-

ph
]

 1
8

D
ec

 2
01

7

Quantum Algorithms for Boolean Equation Solving

and Quantum Algebraic Attack on Cryptosystems

Yu-Ao Chen1,2 and Xiao-Shan Gao1,2
1KLMM, Academy of Mathematics and Systems Science
Chinese Academy of Sciences, Beijing 100190, China

2University of Chinese Academy of Sciences, Beijing 100049, China
Email: xgao@mmrc.iss.ac.cn

December 19, 2017

Abstract

Decision of whether a Boolean equation system has a solution is an NPC problem and finding
a solution is NP hard. In this paper, we present a quantum algorithm to decide whether a
Boolean equation system F has a solution and compute one if F does have solutions with
any given success probability. The complexity of the algorithm is polynomial in the size of
F and the condition number of F . As a consequence, we have achieved exponential speedup
for solving sparse Boolean equation systems if their condition numbers are small. We apply
the quantum algorithm to the cryptanalysis of the stream cipher Trivum, the block cipher
AES, the hash function SHA-3/Keccak, and the multivariate public key cryptosystems, and
show that they are secure under quantum algebraic attack only if the condition numbers of
the corresponding equation systems are large.

Keywords. Quantum algorithm, Boolean equation solving, polynomial system solving,
HHL algorithm, condition number, stream cipher Trivum, block cipher AES, hash function
SHA-3/Keccak, MPKC, 3-SAT, graph isomorphism.

1 Introduction

Solving Boolean equations is a fundamental problem in theoretical computer science. Decision
of whether a Boolean equation system has a solution is an NPC problem and finding a solution
is NP hard. On the other hand, finding a polynomial-time quantum algorithm for an NPC
problem is a basic issue in quantum computing. In this paper, a quantum algorithm for Boolean
equation solving will be given, which can be as much as exponentially faster than traditional
algorithms for the same task under certain conditions.

1.1 Main results

Let F = {f1, . . . , fr} be a set of Boolean polynomials in variables X = {x1, . . . , xn} and with
total sparseness T =

∑r
i=1 #fi, where #fi is the number of terms in fi. Then, we have

Theorem 1.1. For ǫ ∈ (0, 1), there is a quantum algorithm which decides whether F = 0 has
a solution and computes one if F = 0 does have solutions, with probability at least 1 − ǫ and
complexity Õ((n3.5+T 3.5)κ2 log 1/ǫ), where κ is the condition number of the Boolean polynomial
system F (refer to Theorem 5.9 for definition).

1

http://arxiv.org/abs/1712.06239v1

As a consequence, we can solve Boolean equation systems using quantum computers with
any given success probability and in polynomial-time if the condition number κ of F and the
sparseness T of F are small, say when κ and T are poly(n). Since T is the size of the input to the
algorithm, it should be small for practical problems. For instance, all the equation systems from
cryptanalysis in Section 6 are very sparse. Therefore, the key factor is the condition number.
As a consequence, we have achieved exponential speedup for sparse Boolean equation solving if
its condition number is small.

Let F = {f1, . . . , fr} ⊂ C[X] be a set of polynomials in X with total sparseness T =
∑r

i=1 #fi
and ǫ ∈ (0, 1). A solution a for F = 0 is called Boolean, if each coordinate of a is 0 or 1. Clearly,
deciding whether F has a Boolean solution is NPC. We also give a quantum algorithm to
compute Boolean solutions of F.

Theorem 1.2. There is a quantum algorithm which decides whether F = 0 has a Boolean
solution and computes one if F = 0 does have Boolean solutions, with probability at least 1− ǫ
and complexity Õ(n2.5(n + T)κ2 log 1/ǫ), where κ is the condition number of the polynomial
system F (refer to Theorem 4.3 for definition).

We apply Theorem 1.1 to cryptanalysis. As early as in 1946, Shannon [24] pointed out
insightfully that “Construct our cipher in such a way that breaking it is equivalent to solving
a certain system of simultaneous equations in a large number of unknowns.” We know that the
analysis of many cryptosystems, such as the stream cipher Trivum, the block cipher AES, the
hash function SHA-3/Keccak, and the multivariate public key cryptosystems (MPKC), can be
reduced to solving Boolean equations.

Cryptosystems Nk Nr #Vars #Eqs T Complexity

AES-128 4 10 4288 10616 252288 269.26cκ2

AES-192 6 12 7488 18096 421248 271.83cκ2

AES-256 8 14 11904 29520 696384 274.38cκ2

Trivium 1152 3543 4407 24339 255.50cκ2

Trivium 2304 6999 9015 49683 259.06cκ2

Nh Nr #Vars #Eqs T Complexity

Keccak 384 24 76800 77160 611023 273.12cκ2

Keccak 512 24 76800 77288 611540 273.12cκ2

Table 1: Complexities of the quantum algebraic attack

In Table 1, we give the complexities of using Theorem 1.1 to perform quantum algebraic
attack to these cryptosystems, where κ is the condition number of the corresponding Boolean
equation systems, T is the total sparseness of the Boolean equations, and c is the complexity
constant of the HHL algorithm (see Remark 2.4 for definition). For AES-m, m = 32Nk is the
key bit-length and Nr is the number of rounds. For Trivium, Nr is the number of rounds. For
Keccak, Nh is the output size, Nr is the number of rounds, and the state bit-size b is 1600.
From Table 1, we can see that these cryptosystems are secure under quantum algebraic attack
only if the condition numbers of their corresponding equation systems are large. This leads to
a new criterion for designing cryptosystems that can against the attack of quantum computers:
their corresponding equation systems must have large condition numbers. Condition numbers
for equation systems are generally difficult to estimate, and estimating the conditions for these
cryptosystems is an interesting future work.

Many famous problems from computational theory can be reduced to finding a Boolean
solution for certain polynomial systems. In this paper, we use Theorem 1.2 to three such
problems. The 3-SAT problem is clearly equivalent to Boolean equation solving. For a 3-SAT

2

of r clauses and n variables, the quantum complexity to decide its satisfiability is Õ((n2.5(n +
r)κ2 log 1/ǫ). The subset sum problem is: given a set of n integers ai, is there a non-empty subset
whose sum equals to a given number b, which is to find a Boolean solution of the linear equation∑

i aixi = b. We show that there is a quantum algorithm to solve the subset sum problem

with complexity Õ(n3.5κ2 log 1/ǫ). The graph isomorphism problem is to determine whether two
finite graphs are isomorphic. We do not know whether this problem is NPC. The problem can be
described as finding the Boolean solutions for a linear system and the quantum computational
complexity is Õ(n6.5κ2 log 1/ǫ).

1.2 Technical contribution and relation with existing work

The main idea of the quantum algorithm proposed in this paper is that the Boolean solutions
of a polynomial system F can be obtained exactly by solving the Macaulay linear system of F
with the HHL quantum algorithm [16, 2]. For a linear system Ax = |b〉, the HHL algorithm can
obtain an approximation to the solution state |x〉 exponentially faster than classic algorithms
under certain conditions.

Our algorithm is based on three technical contributions: (1) The problem of solving Boolean
equations is reduced to the computation of the Boolean solutions for a sparse polynomial system
in C[X] (see section 5). (2) It is shown that Boolean solutions for a sparse polynomial system in
C[X] can be computed with the HHL algorithm (see section 4). (3) The computation of Boolean
solutions is possible, because we give a formula for the solution of the Macaulay linear system
of a polynomial system (see section 3). We will introduce each of these contributions briefly.

Let F = {f1, . . . , fr} ⊂ C[X] with di = deg(fi), T =
∑r

i=1 #fi, and D a positive integer
greater than maxi di. Consider all the polynomials mjfi, where mj are monomials with degree
≤ D− di. These equations mjfi = 0 can be written as a linear system MF ,DmD = bF ,D, where
mD is the set of all the monomials with degree ≤ D and bF ,D is the set of the constant terms
in mjfi. The linear system MF ,DmD = bF ,D is called the Macaulay linear system of F . The F4
algorithm [14] and the XL [11] algorithm to compute the Gröbner basis of F is to use Gaussian
elimination to MF ,D for certain D.

Our contribution here are two folds. First, we show that MF ,D is a T -sparse matrix, which
allows us to use the HHL algorithm. Second, we give a formula for the solution of MF ,DmD =
bF ,D when using the HHL algorithm [16] to it, which is called the pseudo solutions of F = 0.

Secondly, we show how to compute the Boolean solutions for a polynomial system F , which
is the solutions of F1 = F ∪ {x21 − x1, . . . , x

2
n − xn} over C. Our contribution here is to show

that the Boolean solutions of F = 0 can be obtained from the pseudo-solutions of F1 = 0 with
high probability by combining the property of quantum states and that of Boolean solutions.

Thirdly, let F be a Boolean polynomial system in variables X. Since the HHL algorithm works
over C and does not work for finite fields, we cannot use the HHL algorithm to the Macaulay
linear system of F . We prove that the solutions to F are the same as the Boolean solutions of
a 6-sparse polynomial system F2 ⊂ C[X,U] for some extra indeterminates U. Furthermore, the
numbers of variables in U and the numbers of equations in F2 are linear in the size of F . By
computing the Boolean solutions of F2, we find the solutions of F = 0.

Finally, we compare our algorithm with the HHL algorithm for solving the linear system
Ax = |b〉, where A ∈ C

N×N , x, b ∈ C
N . First, the speedup achieved in our algorithm is based

on the exponential speed up of the HHL algorithm for solving sparse linear systems. On the
other hand, the HHL algorithm has the following subtle properties.

1. The algorithm does not give a solution to Ax = |b〉, but a state |x〉 = (x1, . . . , xN).

3

Measuring of |x〉 gives |x1| : |x2| : · · · : |xN | and the complexity will increase to O(N).

2. The algorithm gives an answer |x〉 even if A|x〉 = |b〉 has no solutions.

3. The algorithm works over C, but not over finite fields.

4. The algorithm gives an approximation to the state |x̂〉 with any error bound ν ∈ (0, 1).

Our algorithm does not have these limitations and gives an exact solution to the Boolean system.
It is interesting to see that the second “drawbacks” of the HHL algorithm mentioned above is
used to generate the quantum state |b〉 efficiently (see Lemma 2.5).

The HHL algorithm assumes that |b〉 is given. There exist no efficient algorithms to generate
|b〉 from b [1] and efficient generation for |b〉 can be achieved only in some special cases [8].
Fortunately, in our case, b = bF ,D is very sparse: only the first r entries of b are nonzero, which
leads to an efficient generation for |b〉 and the complexity is negligible comparing to that of the
HHL algorithm.

The complexity of our algorithm contains the condition number of the Boolean polynomial
system, which is inherited from the HHL algorithm. But, the condition number in our case is
much more complicated. It is proved in [16] that the dependence on condition number cannot
be substantially improved. Also note that, for a symmetric and positive-definite A ∈ C

N×N , the
best classic numerical method for solving the linear equation Ax = b has complexity Õ(N

√
κ)

which also depends on the condition number κ of A [23].

Finally, regarding to the HHL algorithm, it is pointed out in [9] that “Will the quantum
solution of linear equations turn out to be a widely used tool, or are its limitations too great
for the technique to be of practical significance? Unfortunately, no concrete task has yet been
proposed for which the quantum algorithm provides a clear advantage.” It seems that the result
of this paper does provide a significant application of the HHL algorithm.

2 A modified HHL algorithm

In this section, we give a modified HHL algorithm which will be used in our algorithm for solving
Boolean equations.

For a matrix M , the arithmetic square root of each nonzero eigenvalue of the matrix M †M
is called a singular value of M , and the quotient of the maximal and minimal singular values is
called the condition number of M . A matrix M is called s-sparse if each row and column of M
has at most s nonzero entries.

The following HHL quantum algorithm [16] is proposed to solve a linear equation system
A|x〉 = |b〉 over C. With the best known algorithm to do the Hamiltonian simulation e−iAt

[4, 16, 1, 10], we have

Theorem 2.1 ([16, 4]). Given an s-sparse matrix A ∈ C
M×N with the condition number κ,

singular values λ1, . . . , λn, and a unitary quantum state |b〉 ∈ C
M . Let |vj〉 (|uj〉) be the eigen-

vectors of A†A (AA†) with respect to the nonzero eigenvalues λ2
j of A†A. Then the singular

value decomposition of A is A =
n∑

j=1
λj|uj〉〈vj |. For the linear equation system A|x〉 = |b〉, HHL

algorithm will give an approximation to the solution state |x〉 for the following vector

x̃ =

n∑

j=1

λ−1
j |vj〉〈vj |b〉, (1)

in time Õ(log(N +M)sκ2/ǫ) with error bounded by a given ǫ ∈ (0, 1).

4

From [16], we can obtain the following result easily.

Corollary 2.2. The solution in (1) given by the HHL algorithm has the minimal ‖x̃‖ =
√

〈x̃, x̃〉
among all solutions x̃ of the linear system.

Ambainis gave a new version of the HHL algorithm with different complexities [2].

Theorem 2.3. The HHL algorithm can be modified to have complexity Õ(log(N +M)sκ/ǫ3).

Remark 2.4. In the cryptanalysis to be given later in this paper, we make the following approx-
imation to the complexities of the HHL algorithm Õ(log(N +M)sκ2/ǫ) ≃ c log(N +M)sκ2/ǫ,
where c is called the complexity constant of the HHL algorithm.

In Theorem 2.1, |b〉 ∈ C
M is given as a quantum state and there exist no efficient algorithms

to generate |b〉 from b [1]. In the rest of this section, we will modify the HHL algorithm such
that the input is A and b instead of A and |b〉. We first prove a lemma.

Lemma 2.5. Let Bx = c be obtained by adding more “equations” 0x = 1 to A|x〉 = |b〉. Then
using HHL to B|x〉 = |c〉, we obtain the same solution state as that of A|x〉 = |b〉.

Proof. Let B =

(
A
0

)
and c =

(
b
1

)
, where we use 0 (1) to represent certain maxtix of zeros

(ones) with the proper dimension. We have B†B = A†A. Then, adding some 0 rows to A will
not change the nonzero eigenvalues of A†A and the eigenvectors of B†B are the same as that of
A†A. Now, the lemma follows from Theorem 2.1.

We have the following modified version of HHL algorithm.

Theorem 2.6. Assume that only the first ρ entries of b ∈ C
M are nonzero and A ∈ C

M×N is
s-sparse. Then, the HHL algorithm can give an ǫ-approximation to the solution state (1) of the
linear system Ax = b in time Õ(log(N + M)sκ2/ǫ + Tρ), where Tρ is the number of nonzero
elements in the first ρ rows of A.

Proof. We assume b = (b1, . . . , bρ, 0, . . . , 0). By dividing bi to the i-row of Ax = b, we may
assume bi = 1 for i = 1, . . . , ρ. This step costs O(Tρ).

Let σ = 2⌈log2 ρ⌉. Then by adding σ − ρ one to b, we obtain c = (1, . . . , 1, 0, . . . , 0) whose
first σ entries are one. Correspondingly, by adding σ − ρ zero rows to A after the ρ-th row, we
obtain a matrix B ∈ C

(M+σ−ρ)×N . Assuming that the matrix A is represented sparsely, adding
some zero rows costs O(1). Then equation system Ax = b becomes

Bx = c (2)

Without loss of generality, we may add more zero rows to B and c such that B ∈ C
2η×N and

c ∈ C
2η , where η = ⌈log2(M +σ−ρ)⌉. With these assumptions, we can easily generate the state

|c〉:
|c〉 = ⊗η−⌈log2 ρ⌉

i=1 |0〉 ⊗⌈log2 ρ⌉
i=1 (H|0〉),

where H is the Hadamard operator. The complexity of generating |c〉 is O(η) = O(log(M)),
since σ = 2⌈log2 ρ⌉ ≤ 2M . The equation system (2) becomes

B√
σ
|x〉 = |c〉 (3)

5

In (3), we need only divide
√
σ to the first ρ rows of B and the complexity is O(Tρ). By Lemma

2.5, equation system (3) has the same solution state as that of A|x〉 = |b〉, when using the HHL
algorithm to them. Since η = ⌈log2(M + σ − ρ)⌉ and σ = 2⌈log2 ρ⌉ ≤ 2M , the total complexity
is Õ(log(N +M)sκ2/ǫ+ Tρ + logM) = Õ(log(N +M)sκ2/ǫ+ Tρ).

Remark 2.7. If ρ is small, say ρ = O(log(N + M)), then Tρ = O(log(N + M)s), which is
negligible comparing to the complexity of the HHL algorithm. In this case, the HHL algorithm
could be used to the equation system Ax = b. Fortunately, the Macaulay linear system to be
solved in this paper has this property.

3 Quantum pseudo-solving of polynomial systems over C

By pseudo-solving of a polynomial system F , we mean to compute the values of the monomials
at the solutions of F = 0, which satisfy a set of linear equations.

3.1 Sparseness of the modified Macaulay matrices

Let C be the field of complex numbers and C[X] the polynomial ring in the indeterminates
X = {x1, . . . , xn}. For a polynomial f ∈ C[X], denote deg(f), #f , and m(f) to be the degree of
f , the sparseness (the number of terms) of f , and the set of monomials of f . For S ⊂ C[X], we
use VC(S) ⊂ C

n to denote the common zeros of the polynomials in S.

Let m denote the set of all the monomials in variables X. In this paper, we will always use
the degree reverse lexicographic (DRL) monomial ordering for x1 < · · · < xn. We assume that
the monomials in m = {m0,m1, . . .} are arranged in the ascending order w.r.t DRL, that is,
m0 < m1 < · · · . It is easy to see that m0 = 1,m1 = x1, . . . ,mn = xn,mn+1 = x21, Let
m≤d = {m0,m1, . . . ,mQd−1} be the set of all monomials of degree ≤ d, where

Qd =

(
d+ n

n

)
= O((d+ n)min{n,d}). (4)

For any j ∈ N, Qd ≤ j < Qd+1 if and only if deg(mj) = d+ 1.

Let F = {f1, . . . , fr} ⊂ C[X] with di = deg(fi) and ti = #fi for i = 1, . . . , r. Let D ∈ N

such that D ≥ maxri=1 di. We will construct a modified Macaulay matrix for F . For each
mj ∈ m≤D−di , mjfi could be considered as a linear function in the monomials in m≤D. We
rewrite these linear functions in matrix form:

m1 < m2 < · · · < mQD−1

m0f1 · · ·
... · · ·

m0fr · · ·
m1f1 · · ·
... · · ·

mQD−dr−1fr · · ·

m1

m2
...

mQD−1

=

m0

−f1(0)
...

−fr(0)
0
...
0

, (5)

denoted as
MF ,DmD = bF ,D, (6)

where mD = (m1, . . . ,mQD−1)
T and the i-th column of MF ,D consists of the coefficients of mi

in m0f1, . . . ,m0fr,m1f0, . . . ,mQD−dr−1fr. MF ,D is called the (modified) Macaulay matrix of

6

the polynomial system F and (6) is called the Macaulay linear system of F . MF ,D is a matrix
over C of dimension (

∑r
i=1QD−di)× (QD − 1).

Denote NF ,D to be the set of monomials mk in mD such that the k-th column of MF ,D is
0. In the other words, NF ,D is the set of monomials not occurring in mjfi in (5). We introduce
the notation m̃F ,D ∈ m

QD−1: for i = 1, . . . , QD − 1,

m̃F ,D(i) =

{
mi, if mi 6∈ NF ,D;

0, if mi ∈ NF ,D.
(7)

Using the notations just introduced, we have

Lemma 3.1. MF ,D is T -sparse and maxi ti row sparse, where T =
∑r

i=1 ti is called the total
sparseness of F .

Proof. Since mjfi has ti terms, each row of MF ,D has at most maxi ti nonzero entries. Consider
the k-th column corresponding to the monomial mk. For a fixed fi =

∑
j ci,jmni,j , we have

mumni,j > mvmni,j for mu > mv. Since each coefficient of mufi is strictly shifted to the
righthand side with respect to the corresponding coefficients of mvfi for mu > mv, at most ti
monomials of mjfi for mj ∈ mD−di are mk. Thus there exist at most

∑
i ti nonzero entries per

column. The lemma is proved.

Corollary 3.2. Suppose that all equations in F are nonlinear. Let r = n+1 and D =
∑n+1

i=1 di−
n the Macaulay degree [20], the classic Macaulay matrix is of dimension (

∑n+1
i=1 QD−di)× (QD−

1) = Õ(nDn ×Dn) and (
∑n+1

i=1 ti)-sparse.

Proof. Since all equations in F are nonlinear, we have D < D − di. By (4), QD−di = O(Dn)
and the corollary is proved.

F = {f1, . . . , fr} ⊂ C[X] is called a multivariate quadratic polynomial system (MQ) if
deg(fi) = 2.

Corollary 3.3. Let F = {f1, . . . , fr} be a set of MQ. Then #fi ≤ Q2 =
(n+1)(n+2)

2 , MF ,D is of

dimension Õ(rDn) and O(n2r)-sparse.

Example 3.4. Let f1 = x21 − x2, f2 = x1 − 2, D = 2. Then the Macaulay linear system is

f1 0 −1 1 0 0
f2 1 0 0 0 0
x1f2 −2 0 1 0 0
x2f2 0 −2 0 1 0

x1
x2
x21

x1x2
x22

=

0
2
0
0

.

3.2 Solution of the Macaulay linear system

In this section, we give an explicit formula for the solution of the Macaulay linear system. We
first introduce the concept of solving degree [19, 6].

Definition 3.5. Let F = {f1, . . . , fr} ⊂ C[X] and (F) the ideal generated by F . D is called the
solving degree of F , if we can use Buchberger’s algorithm to compute the Gröbner basis of (F)
such that all the polynomials in the procedure have degrees less than or equal to D. Denote the
solving degree of F by Sdeg(F).

7

In terms of the F4 algorithm [14] or the XL algorithm [11], D is the solving degree of F , if
the Gröbner basis of (F) can be obtained from MF ,DmD = bF ,D by using Gaussian elimination
over C.

For a polynomial f ∈ C[X], denote fh to be the homogenization of f in C[x0,X]. F =
{f1, . . . , fr} ⊂ C[X] is said to satisfy Lazard’s condition if Fh = {fh

1 , . . . , f
h
r } ⊂ C[x0,X] has a

finite number of solutions in the projective space Pn
C
. Lazard [19] and more recently Caminata-

Gorla [6] proved the following upper bound for the solving degree.

Theorem 3.6 ([19]). Let I be an ideal in C[X] generated by F = {f1, . . . , fr} of degrees
d1, . . . , dr, such that d1 ≥ d2 ≥ · · · ≥ dr. Choose any graded monomial order. If F satis-
fies Lazard’s condition, then Sdeg(F) ≤ d1 + · · ·+ dn+1 − n+ 1 with dn+1 = 1 if r = n.

Corollary 3.7 ([6]). Denote d = maxi di, Sdeg(F) ≤ (n+1)(d−1)+2 under Lazard’s condition.

The following lemma gives the solutions to the Macaulay linear system (5).

Lemma 3.8. Let F = {f1, . . . , fr} ⊂ C[X] such that I = (F) is a radical zero-dimensional ideal
and VC(I) = {a1, . . . ,aw}. Let D be a solving degree of F . Then any solution mD of the linear
system MF ,DmD = bF ,D is of the form

m̂D =

w∑

i=1

ηim(ai) +
∑

mk∈NF,D

µkek,

where ηi are complex numbers such that
∑w

i=1 ηi = 1, µk are arbitrary complex numbers, and ek
is the k-th unit vector in C

QD−1.

Proof. For each mk ∈ NF ,D, the k-th row in MF ,D is a zero column, so mk can take arbitrary
value in the solution of the Macaulay linear system and hence µkek is part of the solution.
Delete the k-th column in MF ,D and the k-th row in mD and bF ,D to obtain a new system

M̃F ,Dm̃F ,D = b̃F ,D. Since D is a solving degree, we can obtain a Gröbner basis of the ideal
I by doing Gaussian elimination on the linear system. Denote MF ,Dm̃F ,D = bF ,D to be such
a linear system containing a Gröbner basis G of I. Denote LT (I) to be set of the leading
monomials of the polynomials in I. Then, the largest monomial in each row MF ,D is in LT (I)
and each monomial in LT (G) occurs as one of the leading monomials for some row. Thus,

the dimension of the solution space of M̃F ,Dm̃F ,D = bF ,D is at most #(m \ LT (I)) − 1 =
#V (I) − 1 = w − 1, where the first equality is true because I is radical. Since each m̃F ,D(ai)

is a solution of M̃F ,Dm̃F ,D = bF ,D, {
∑

ηim̃F ,D(ai)|
∑

ηi = 1} is a subspace of the solution

space of M̃F ,Dm̃F ,D = bF ,D, that is, the solution space is of dimension at least w − 1. Then,

{∑ ηim̃F ,D(ai)|
∑

ηi = 1} is exactly the solution space of M̃F ,Dm̃F ,D = bF ,D. The lemma is
proved.

Corollary 3.9. In Lemma 3.8, if F has a unique solution a, then we have

m̂D = mD(a) +
∑

mk∈NF,D

µkek.

Example 3.10. The equation system in Example 3.4 has a unique solution x1 = 2, x2 = 4,
and NF ,D = {x22}. By Corollary 3.9, the solution of the Macaulay linear system is (2, 4, 4, 8, µ),
where µ is an arbitrary complex number.

8

3.3 A quantum algorithm for pseudo-solving of polynomial systems

In this section, we give an explicit formula for the solution of the Macaulay linear system when
using the HHL quantum algorithm to it. Using the modified HHL algorithm (Theorem 2.6) to
the Macaulay linear system MF ,DmD = bF ,D, we have

Theorem 3.11. Let F = {f1, . . . , fr} ⊂ C[X] such that I = (F) is a radical zero-dimensional
ideal, V(I) = {a1, . . . ,aw}, and ǫ ∈ (0, 1). Let D be a solving degree of F . Using the modified
HHL algorithm to the Macaulay linear system MF ,DmD = bF ,D, the answer is an approximation
to the following solution state

|m̂D〉 =
w∑

i=1

ηi|m̃(ai)〉,

with a given error bounded by ǫ, where ηi are complex numbers such that
∑w

i=1 ηi = 1 and

‖∑w
i=1 ηim̃(ai)‖ is minimal. The complexity is Õ(log(D)nTκ2/ǫ), where T =

∑r
i=1#fi and κ

is the condition number of MF ,D.

Proof. By Lemma 3.8,

|m̂D〉 =
∑

∑
ηi=1

ηi|mD(ai)〉+
∑

mk∈NF,D

µk|ek〉 =
∑

∑
ηi=1

ηi|m̃D(ai)〉+
∑

mk∈NF,D

µ̃k|ek〉.

By Corollary 2.2, ‖m̂D‖ is minimal. Since 〈ek|m̃D(ai)〉 = 0, in order for ‖m̂D‖ to be minimized,
each µ̃k = 0. We may change the order of fi such that, the first ρ polynomials fi have nonzero
constant terms. This step costs O(r). Let Tρ =

∑ρ
1=1 #fi. By Theorem 2.6 and (4), the

complexity is Õ(log(
∑r

i=1 QD−di +(QD− 1))(
∑r

i=1 ti)κ
2/ǫ+Tρ) = Õ(log(rQD−1+QD)Tκ

2/ǫ+

Tρ) = Õ(log((n +D)min{n,D})Tκ2/ǫ+ Tρ) = Õ(log(n+D)min{n,D}Tκ2/ǫ+ Tρ). Since n ≤ D
for nonlinear systems and Tρ ≤ T , we prove the theorem.

In Theorem 3.11, the answer is a linear combination of the monomials of the solutions of
F = 0, which is called the pseudo-solution for F = 0.

If F satisfies Lazard’s condition, by Corollary 3.7, we have the following three corollaries.

Corollary 3.12. Set D = (n+1)(d−1)+2 in Theorem 3.11, the complexity is Õ(log(d)nTκ2/ǫ),
where d = maxi deg(fi).

Corollary 3.13. For MQ, we have d ≤ 2, T = O(rn2), D ≤ n + 3 and the complexity is
Õ(n3rκ2/ǫ).

Corollary 3.14. If F = 0 has a unique solution a, then the solution state is |m〉 = |m̃(a)〉.
The complexity is Õ(log(d)nTκ2/ǫ).

By Remark 2.4, the exact complexity for Theorem 3.11 is

Corollary 3.15. The exact complexity to compute |m̂D〉 is c log(N + M)Tκ2/ǫ, where N =∑r
i=1QD−di, M = QD − 1, and c is the complexity constant of the HHL algorithm.

Example 3.16. If using the modified HHL algorithm to solve the linear system in Example 3.4,
by Theorem 3.11, the solution is (2, 4, 4, 8, 0). In order to find the unique solution x1 = 2, x2 = 4,
we need to know how to project (x1, x2, x

2
1, x1x2, x

2
2) to (x1, x2) efficiently.

Motivated by the above example, we propose the following problem.

Problem 3.17. Let |u〉 be an N -dimensional quantum state and n ≪ N . How can we measure
the first n coordinates of |u〉 efficiently.

9

4 Find Boolean solutions for polynomial systems in C[X]

A solution a for F ⊂ C[X] is called Boolean, if each coordinate of a is 0 or 1. In this subsection,
we will give a quantum algorithm to compute the Boolean solutions of F = 0.

4.1 A quantum algorithm to find Boolean solutions

For F ⊂ C[X], the Boolean solutions of F are VC(F ,HX), where HX = {x21 − x1, . . . , x
2
n − xn}.

We first prove a lemma.

Lemma 4.1. For F ⊂ C[X], I = (F ,HX) is radical and satisfies Lazard’s condition.

Proof. Since (F) + (x1 − a1, . . . , xn − an) is a maximal ideal in the ring C[X],

(F ,HX) =
⋂

a1,...,an∈{0,1}
((F) + (x1 − a1, . . . , xn − an)),

is an intersection of maximal ideals and I is a radical ideal. Considering the zero of Ih at infinity,
x0 = 0 and each x2i − xix0 = 0 implies xi = 0, so I satisfies Lazard’s condition.

By Lemma 4.1, we can use Theorem 3.11 to compute |m̂D〉 where the solving degree D is
given in Theorem 3.6. Denote 0 as (0, . . . , 0) and 1 as (1, . . . , 1). Our quantum algorithm to
compute Boolean solutions is given below.

Algorithm 4.2.

Input: F = {f1, . . . , fr} ⊂ C[X] with T =
∑r

i=1#fi and di = deg(fi). Also ǫ ∈ (0, 1).

Output: A Boolean solution a ∈ VC(F ,HX) or ∅ meaning that VC(F ,HX) = ∅, with success
probability at least 1− ǫ.

Step 1: If F(0) = 0, return 0. If F(1) = 0, return 1. Set k = 1.

Step 2: Let F1 be obtained from F by replacing xmi in F with xi for all i and m ∈ N. Let
Y = X.

Step 3: Let F2 = F1 ∪HY, and D = Sdeg(F2) as in Theorem 3.6.

Step 4: Use the modified HHL algorithm (Theorem 2.6) to the Macaulay linear system MF2,D

mD = bF2,D to obtain a state |m̂〉 with the error bound
√

ǫ1/n, where ǫ1 can be chosen
arbitrarily in (0, 1) such as ǫ1 = 1/2.

Step 5: Measuring |m̂〉, we obtain a state |ek〉 or equivalently, the number k.

Step 6: Let mk =
∏uk

i=1 xni . Set xni = 1 in F1 ⊂ C[Y] for i = 1, . . . , uk.

Step 7: Remove 0 from F1. Set Y = Y \ {xni | i = 1, . . . , uk}.

Step 8: If 1 ∈ F1 or Y = ∅ then goto Step 11

Step 9: If F1 6= ∅ and F1(0) 6= 0, then goto Step 3.

Step 10: Return (a1, . . . , an) where ai = 0 if xi ∈ Y else ai = 1.

Step 11: If ⌈logǫ1 ǫ⌉ < k then return ∅, else k = k + 1 and goto Step 2.

10

We first show what exactly the algorithm does in the following theorem and then prove the
claim in the rest of this section.

Theorem 4.3. Algorithm 4.2 has the following properties.

• If the algorithm returns a solution, then it is a Boolean solution of F = 0. Equivalently,
if F has no Boolean solutions, the algorithm returns ∅.

• If F has Boolean solutions, the algorithm computes one with probability at least 1− ǫ.

• The complexity of the algorithm is Õ(n2.5(n + T)κ2 log 1/ǫ) if using the HHL algorithm
[16] and Õ(n3.5(n+ T)κ log 1/ǫ) if using Ambainis’ algorithm [2], where κ is the maximal
condition number for all matrixes MF2,D in Step 4 of the algorithm, called the condition
number for the polynomial system F .

In the rest of this section, we will prove the correctness of Theorem 4.3.

First, we briefly explain each step. In Step 1, we first check two easy solutions in time O(T).
In Step 2, we replace xmi by xi in time Õ(nT). As a consequence, deg(F) ≤ n. In Step 3, the
solving degree from Theorem 3.6 can be used due to Lemma 4.1. We have D = O(nd) < O(n2).
In Step 4, we use the modified HHL to solve the Macaulay linear system.

In Step 5, we measure the quantum state |m̂〉 and obtain an interger k. In Step 6, we will
show later that with high provability mk =

∏uk
i=1 xni 6= 0 at a solution a = (a1, . . . ,an) of F = 0.

Since ai is either 0 or 1,
∏uk

i=1 ani 6= 0 implies ani = 1 for all ni. We thus set xni = 1 in Step 7
and try to find the other coordinates of a.

In Step 8, 1 ∈ F1 implies VC(F1,HX) = ∅. From step 1, F(1) 6= 0. If Y = ∅, then
VC(F1,HX) = ∅.

In Step 9, if F1 = ∅ or F1(0) = 0, then we find a solution of F : xi = 0 for any xi ∈ Y and
xj = 1 for any xj 6∈ Y, which will be returned in Step 10. Otherwise, we repeat the procedure
for F1 in Step 11.

Secondly, we prove the correctness of Theorem 4.3. It is easy to see that if the algorithm
returns a solution, then it is a Boolean solution of F = 0. The second property of Theorem 4.3
follows from Lemma 4.6.

The following lemma gives the successful probability for Step 5.

Lemma 4.4. In Steps 5 and 6, with a probability > 1− ǫ1/n, VC(F1,HX) 6= ∅ implies that there
exists an a = (a1, . . . , an) ∈ VC(F1,HX) with ani = 1 for i = 1, . . . , uk.

Proof. Let |mD〉 =
∑QD−1

j=1 αj|ej〉 be the solution state and |m̂D〉 =
∑QD−1

j=1 βj |ej〉 be the ap-
proximate state obtained with the HHL algorithm. By the definition of quantum measurement,
we have a probability ‖∑k,αk=0 βk|ek〉‖2 < ‖∑QD−1

k=1 (βk − αk)|ek〉‖2 = ‖m̂D −mD‖2 < ǫ1/n to
obtain some state |ek〉 under the condition mk(a) = 0 for all a ∈ V(F1). Conversely, we have a
probability > 1− ǫ1/n to obtain some state |ek〉 such that mk(a) = 1 for some a ∈ V(F1).

Lemma 4.5. The loop from Step 3 to Step 9 will run at most n times, and returns ∅ with
probability < ǫ1 when F = 0 has Boolean solutions.

Proof. Since at each loop, the values of at least one xi will be determined in Step 6, we will
repeat this loop for at most n times. By Lemma 4.4, when F = 0 has Boolean solutions, the
algorithm returns ∅ with probability < 1− (1− ǫ1/n)

n < ǫ1.

Lemma 4.6. The loop from Step 2 to Step 11 will run at most ⌈logǫ1 ǫ⌉ times and with probability
≥ 1− ǫ, returns a Boolean solution of F = 0 when F = 0 has Boolean solutions.

11

Proof. By Lemma 4.5, if F has Boolean solutions, then the probability that we reach step 11 is
< ǫ1. The number of loops from Step 2 to Step 11 is at most ⌈logǫ1 ǫ⌉. Then, if F has Boolean

solutions, then the probability that the algorithm returns ∅ is ǫ
⌈logǫ1 ǫ⌉
1 < ǫ.

Finally, we will estimate the complexity of Algorithm 4.2. Step 4 is the dominate step in
terms of complexities. The complexities for other steps are very low comparing to that of Step
4. So, we just omit them from the complexity analysis.

We have D ≤ (n + 1)(d − 1) + 2 and MF2,D is of dimension (
∑r

i=1QD−di)× (QD − 1) and
(2n + T)-sparseness. By Corollary 3.15, the complexity of Step 4 is c log(

∑r
i=1QD−di +QD −

1)(2n + T)κ2
√

n/ǫ1.

By Lemma 4.5, the loop from Step 3 to Step 9 will run at most n times. Then the complexity
for the loop from Step 3 to Step 9 is

∑n−1
j=0 (c log(

∑r
i=1 QD−di+QD−1)(2(n−j)+T)κ2

√
n/ǫ1) =

c log(
∑r

i=1QD−di +QD − 1)(n(n + 1) + nT)κ2
√

n/ǫ1.

By Lemma 4.6, the loop from Step 2 to Step 11 will run at most ⌈logǫ1 ǫ⌉ times. Then the

total complexity of the algorithm is c log(
∑r

i=1QD−di+QD−1)(n(n+1)+nT)κ2
√

n/ǫ1⌈logǫ1 ǫ⌉ =
c log(

∑r
i=1QD−di +QD − 1)n1.5(n + 1 + T)κ2

√
2⌈log2 1/ǫ⌉, by choosing ǫ1 to be 1/2.

Since
∑r

i=1 QD−di + QD − 1 ≤ rQD−1 + QD, we have log(
∑r

i=1QD−di + QD − 1)) <
log(rQD−1 + QD) = log(r

(n+D−1
n

)
+

(n+D
n

)
) = log((rn/(n + D) + 1)

(n+D
n

)
) = log(rn/(n +

D) + 1) + log
(
n+D
n

)
≤ log(nr/(dn+ d+ 1) + 1) + log

(
n+D
n

)
≤ log(r + 1) + log

(
n+D
n

)
.

To estimate the number
(
n+D
n

)
, we need to use Stirling’s approximation:

√
2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n, (8)

where e is Euler’s number.

Lemma 4.7. For n, γ ∈ R≥1,

(
n+ γn

n

)
≤ e(γ + 1)1/2

2π(γn)1/2
en ≤ en+1

√
2nπ

. (9)

Proof.
(n+γn

n

)
= (n+γn)!

(γn)!n! ≤ e(n+γn)n+γn+1/2e−n−γn
√
2πnn+1/2e−n

√
2π(γn)γn+1/2e−γn

= enn+γn+1/2(γ+1)n+γn+1/2

2πnn+γn+1γγn+1/2 = e(γ+1)1/2

2π(γn)1/2

(1 + 1/γ)γn ≤ e(γ+1)1/2

2π(γn)1/2
en. Considering γ ≥ 1, we have

(n+γn
n

)
≤ e21/2

2πn1/2 e
n.

Let γ = D/n = ((n+1)(d−1)+2)/n = d+(d+1)/n, and we have log2
(n+D

n

)
≤ log2(

en+1√
2nπ

) =

(n+ 1) log2 e− log2(
√
2nπ) < n log2 e. Finally, we have the exact complexity for Algorithm 4.2:

Lemma 4.8. The exact time complexity for Algorithm 4.2 is
√
2c(n log2 e+ log2 r)n

1.5(n+ 1+
T)κ2⌈log2 1/ǫ⌉. Moreover, it equals to Õ(n2.5(n+ T)κ2 log 1/ǫ), because r ≤ T .

We have completed the proof of Theorem 4.3.

Remark 4.9. The purpose of the loop started in Step 11 is to use less qubits. If we do not use
this loop, we need to set ǫ1 = ǫ in step 4 and the precision needed is

√
ǫ
n . With the loops started

in Step 11, we can use a large value for ǫ1 ∈ (0, 1), say ǫ1 = 1/2, then the precision needed in
Step 4 is

√
ǫ1/n = 1√

2n
which is generally larger than

√
ǫ
n .

Remark 4.10. Note that the degrees di = deg(fi) does not appear in the complexity of the
algorithm. Also note that due to Step 2, we have deg(fi) ≤ n.

12

We can easily improve our algorithm to the following form.

Remark 4.11. Given (a1, . . . , an) ∈ C
n, F ⊂ C[X], we can obtain an element in VC(F , x21 −

a1x1, . . . , x
2
n−anxn) by Algorithm 4.2, where we need to replace HX with (x21−a1x1, . . . , x

2
n−anxn)

and xni = 1 with xni = ani in Step 6.

4.2 Obtain all the Boolean solutions

We will show how to find all Booelan solutions of F . For a Boolean solution a of F , the following
lemma shows how to construct a polynomial system F1 satisfying VC(F1,HX) = VC(F ,HX)\{a}.

Lemma 4.12. For a = (a1, . . . , an) ∈ VC(F ,HX), we have

ProjXVC(F ,HX,S, fa) = VC(F ,HX) \ {a}

where S = {x̄i + xi − 1 | i = 1, . . . , n}, fa =
∏

ai=0 x̄i
∏

ai=1 xi, and x̄i are new variables.

Then we can use the Algorithm 4.2 to find all Boolean Solutions for F = 0.

Algorithm 4.13.

Input: F = {f1, . . . , fr} ⊂ C[X] with T =
∑r

i=1#fi and di = deg(fi). Also ǫ ∈ (0, 1).

Output: VC(F ,HX).

Step 1: Set S = ∅. F1 = F ∪ {x1 + x̄1 − 1, . . . , xn + x̄n − 1} ⊂ C[X,X] with X = {x̄1, . . . , x̄n}.

Step 2: Use Algorithm 4.2 to compute Boolean solutions of F1 = 0. If we obtain ∅, return S.
Else we obtain a Boolean solution a = (a1, . . . , an).

Step 3: S = S ∪ {a}, F1 = F1 ∪ {∏ai=0 x̄i
∏

ai=1 xi}. Goto Step 2.

Theorem 4.14. Let w = #D. Then Algorithm 4.13 finds w Boolean solutions of F = 0 with
complexity Õ(n2.5(n+ T + w)wκ2 log 1/ǫ), and probability at least (1− ǫ)w.

Proof. By Theorem 4.3, the complexity of the algorithm is
∑w−1

i=0 Õ((2n)2.5(2n + 3n + T +

i)κ2 log 1/ǫ) = Õ(n2.5(n+ T + w)wκ2 log 1/ǫ).

4.3 Computing Boolean solutions to linear systems and applications

Many well-known problems in computation theory can be described as finding the Boolean solu-
tions for linear systems. In this section, we consider two such problems and their computational
complexities using our quantum algorithm.

The subset sum problem is an important problem in complexity theory and cryptography.
The problem is: given a set of integers, is there a non-empty subset whose sum is a given
number? The problem can be described as finding the Boolean solutions for a linear system.
We have the following result.

Proposition 4.15. Let A ∈ Z
r×n for r < n and b ∈ Z

r. There is a quantum algorithm to
find the Boolean solutions to the linear system Ax = b with probability ≥ 1 − ǫ and complexity
Õ(n3.5rκ2 log 1/ǫ)

13

Proof. We have r linear equation of sparseness (n + 1) and n quadratic binomials. Thus T =
2n + nr + r, by Theorem 4.3, we can use Algorithm 4.2 to find a Boolean solution for Ax = b
in time Õ(n2.5(n+ 2n+ nr + r)κ2 log 1/ǫ) = Õ(n3.5rκ2 log 1/ǫ).

The graph isomorphism problem is another well-known problem in computational theory,
which is to determine whether two finite graphs are isomorphic. We do not know whether it is
NPC or P. The problem can be described as solving the Boolean solutions for a linear system.
Let A and B in F

n×n
2 be the adjacent matrices for two graphs, the graph isomorphism problem

is to decide whether there exists a permutation matrix P such that AP = PB.

Proposition 4.16. There is a quantum algorithm to decide whether two graphs with n vertices
are isomorphism with probability ≥ 1− ǫ and complexity Õ(n6.5κ2 log 1/ǫ).

Proof. Let A = (aij), B = (bij), P = (xij) with
∑

i xij = 1 for each j,
∑

j xij = 1 for each i, and

x2ij−xij = 0 for each i, j. Thus in the equation system, the number of 2n-sparse linear equations

is n2, the number of (n+1)-sparse linear equations is 2n, and the number of quadratic binomials
is n2. Thus T = 2n3 + 4n2 + 2n, by Theorem 4.3, we can use Algorithm 4.2 to find a Boolean
solution for AP = PB in time Õ((n2)2.5(n2 + 2n3 + 4n2 + 2n)κ2 log 1/ǫ) = Õ(n8κ2 log 1/ǫ).

Due to the special property of the problem, the complexity could be reduced as follows.
Considering the loop from Step 3 to Step 9 in Algorithm 4.2, since exactly n of xij equal to 1 in
the permutation matrix P , the number of loops will be n instead of n2. Thus the error bound
in step 4 will be

√
ǫ1/n instead of

√
ǫ1/n2. Finally, we can use Algorithm 4.2 to find a Boolean

solution for AP = PB in time Õ(n8−1.5κ2 log 1/ǫ) = Õ(n6.5κ2 log 1/ǫ).

By Propositions 4.15 and 4.16, in order to determine the quantum complexity of these two
problems, we need only to study the condition numbers of the corresponding equation systems.

5 Solving Boolean equation systems

In this section, we will give a quantum algorithm to solve Boolean equations by converting the
problem into computing the Boolean solutions of a sparse polynomial system over C.

5.1 Reduce Boolean systems to polynomial systems over C

Let F2 be the field consisting of 0 and 1. We will consider the problem of equation solving over
F2, or equivalently, solving Boolean equations. Let X = {x1, . . . , xn} be a set of indeterminants
and

R2[X] = F2[X]/(HX),

where HX = {x21 − x1, . . . , x
2
n − xn}. Then R2[X] is a Boolean ring and every ideal in R2 is

radical. Elements in R2 are called Boolean polynomials, which have the form
∑

i mi and mi are
Boolean monomials with degree at most one for each xi. Similar to Section 3, we use VF2

(F) to
denote the zeros of F ⊂ R2[X] in F2.

We first show how to reduce a given Boolean polynomial into several s-sparse Boolean poly-
nomials for a given s ∈ N≥3. Let f =

∑t
i=1 mi be a Boolean polynomial. Set St = ⌈ t−s

s−2⌉ and
Uf = {u1, . . . , uSt} be a set of new variables depending on f . We define a Boolean polynomial
set S(f, s) as follows. If t ≤ s, then S(f, s) = {f}. Otherwise, let

S(f, s) = {f̌1, . . . , f̌St+1} ⊂ R2[X,Uf] (10)

14

where f̌1 =
∑s−1

k=1mk + u1, f̌j =
∑j(s−2)+1

k=(j−1)(s−2)+2 mk + uj−1 + uj for j = 2, . . . , St, and f̌St+1 =∑t
k=St(s−2)+2 mk + uSt . S(f, s) is called the splitting set for f .

For the convenience of presentation, in this paper, we give new meaning to the notation:
⌈e⌉ = 0 if e ≤ 0. With this assumption, #Uf = ⌈ t−s

s−2⌉ and #S(f, s) = ⌈ t−s
s−2⌉+ 1.

For a set F of Boolean polynomials, denote U(F , s) =
⋃

f∈F U(f, s), and

S(F , s) =
⋃

f∈F
S(f, s) ⊂ R2[X,U(F , s)]. (11)

The following results are easy to check.

Lemma 5.1. Let F = {f1, . . . , fr} ⊂ R2[X] and ti = #fi. Then S(F , s) is s-sparse, deg(S(F , s))
= deg(F), #S(F , s) = r+

∑
i⌈ ti−s

s−2 ⌉, #(X∪U(F , s)) = n+
∑

i⌈ ti−s
s−2 ⌉. In particular, #S(F , 3) =

T − 2r and #(X ∪ U(F , 3)) = n+ T − 3r, where T =
∑

i ti.

Lemma 5.2. Let F = {f1, . . . , fr} ⊂ R2[X]. For a given s ∈ N≥3, we have

(S(F , s))
⋂

R2[X] = (F), ProjXVF2
(S(F , s)) = VF2

(F),

where (S(F , s)) is the ideal generated by S(F , s) in R2[X,U(F , s)].

The following example shows that we cannot use a method of equation solving over C to
solve Boolean equations directly.

Example 5.3. Let f = x1+x2+1. Then VF2
(f) = {(0, 1), (1, 0)}. But VC(f, x

2
1−x1, x

2
2−x2) =

∅.

The following lemma shows how to transfer Boolean equation solving to equation solving
over C.

Lemma 5.4. Let F = {f1, . . . , fr} be a set of Boolean polynomials with ti = #fi. In C[X], let

Fi =
∏⌊ti/2⌋

k=fi(0)
(fi − 2k) and let

C(F) = {F1, . . . , Fr} ∪HX. (12)

Then VF2
(F) = VC(C(F)). Furthermore, (C(F)) is a radical ideal in C[X] and satisfies Lazard’s

condition.

Proof. Let fi =
∑ti

k=1mik and a = (a1, . . . , an) ∈ VF2
(F). When we regard fi as a polynomial

in C[X], fi(a) =
∑ti

k=1mik(a) is an even integer between fi(0) and ti, because fi(a) ≡ 0

mod 2. Thus a is a zero of Fi =
∏⌊ti/2⌋

k=fi(0)
(fi − 2k). The other direction is easy: a zero a of

Fi =
∏⌊ti/2⌋

k=fi(0)
(fi−2k) satisfies fi(a) = 2k for some k, and hence fi(a) = 0 in R2[X]. By Lemma

4.1, (C(F)) is radical and satisfies Lazard’s condition.

Corollary 5.5. Let Fi be defined in Lemma 5.4. Then the solving degree of C(F) satisfies
≤ (n+ 1)(t/2 + 1)d− n+ 1, where t = maxi #fi and d = maxi deg(fi).

Proof. By Corollary 3.7, the solving degree of (C(F)) satisfies Sdeg(C(F)) ≤ (n+1)(maxi deg(Fi)
−1) + 2 ≤ (n+ 1)(t/2 + 1)d− n+ 1.

We summarize the results of this subsection as the following theorem.

15

Theorem 5.6. Let F = {f1, . . . , fr} ⊂ R2[X] with ti = #fi and di = deg(fi). For a given
s ∈ N≥3, let Y = X ∪ U(F , s). Then we have a polynomial set

P (F , s) = C(S(F , s)) ⊂ C[Y]

such that VF2
(F) = ProjXVC(P (F , s)) and (P (F , s)) is a 0-dimensional radical ideal in C[Y]

and satisfies Lazard’s condition. Furthermore, P (F , s) is s(s + 1)⌊s/2⌋-sparse, deg(P (F , s)) ≤
(⌊s/2⌋ + 1)deg(F), #P (F , s) = r + n + 2

∑
i⌈ ti−s

s−2 ⌉, #Y = n +
∑

i⌈ ti−s
s−2 ⌉, Sdeg(P (F , s)) <

(2n+ sn+ 5rt)d/2 + 2 = O((sn+ rt)d).

Proof. For any F̌ =
∏⌊s/2⌋

k=f̌(0)
(f̌ − 2k) ∈ C(S(F , s)), #f̌ ≤ s implies #F̌ ≤ s(s + 1)⌊s/2⌋. By

Corollary 5.5, the solving degree of P (F , s) is Sdeg(P (F , s)) ≤ (#Y+1)(s/2+1)deg(S(F , s))−
#Y + 1 = (n +

∑
i⌈ ti−s

s−2 ⌉ + 1)(s/2 + 1)d − (n +
∑

i⌈ ti−s
s−2 ⌉) + 1 ≤ (n + r(t− 2)/(s − 2))((s/2 +

1)d− 1) + 2 < (2n + sn+ 5rt)d/2 + 2 = O((sn+ rt)d).

In our algorithm, we use s = 3 and from Theorem 5.6, we have

Corollary 5.7. For s = 3, P (F , 3) is 6-sparse, deg(P (F , 3)) ≤ 2deg(F), #P (F , 3) = 2T +n−
5r, #Y = T + n− 3r, Sdeg(P (F , 3)) < 2.5(n + rt)d+ 2 = O((n + rt)d).

Proof. We need only to show that P (F , 3) is 6-sparse and other results are easy to verify. For

s = 3, we can replace Fi =
∏⌊ti/2⌋

k=fi(0)
(fi − 2k) with

F̂i =

{
fi − 2, if fi(0) = 1;

2mi1mi2 + 2mi1mi3 + 2mi2m3 −mi1 −mi2 −mi3, if fi(0) = 0,
(13)

where fi = mi1 + mi2 + mi3. In P (F , 3), we have m2 = m for any monomial m. Then,
Fi = fi(fi − 2) = m2

i1 − 2mi1 + m2
i2 − 2mi2 + m2

i3 − 2mi3 + 2mi1mi2 + 2mi1mi3 + 2mi2mi3 =
2mi1mi2 + 2mi1mi3 + 2mi2m3 −mi1 −mi2 −mi3 (mod HY), which is 6-sparse.

5.2 Quantum algorithm for Boolean equation solving

In this subsection, we will give a quantum algorithm to solve Boolean equations.

Algorithm 5.8.

Input: F = {f1, . . . , fr} ⊂ R2[X] and ǫ ∈ (0, 1).

Output: A zero of F or ∅ meaning that VF2
(F) = ∅ with probability > 1− ǫ.

Step 1: Compute F1 = S(F , 3) ⊂ R2[Y] as defined in (11), where Y = X ∪ U(F , 3).

Step 2: Compute F2 = C(F1) ⊂ C[Y] as defined in (12).

Step 3: Use Algorithm 4.2 to find a Boolean solution of F2 = 0 over C[Y], with probability
bound ǫ. Return ∅ if Algorithm 4.2 returns ∅, else we have a Boolean solution a for F2.

Step 4: Return ProjXa.

Theorem 5.9. Algorithm 5.8 has the following properties.

• If the algorithm returns a solution, then it is a solution of F = 0. Equivalently, if VF2
(F) =

∅, the algorithm returns ∅.

16

• If VF2
(F) 6= ∅, the algorithm computes a solution of F = 0 with probability > 1− ǫ.

• The complexity is Õ((n3.5 + T 3.5)κ2 log 1/ǫ) if using HHL and Õ((n4.5 + T 4.5)κ log 1/ǫ) if
using Ambainis’ algorithm [2], where T =

∑
i#fi and κ is the maximal condition number

of the polynomial system F2, called the condition number of the Booolean system F .

Proof. In Step 2, we split F to 3-sparse polynomials and then turn them into a polynomial
system over C in time O(T). By Theorem 5.6, VF2

(F) = VC(F2). Thus, we need only to solve
F2 over C in Step 3.

By Theorems 4.3 and 5.6, the complexity of Step 3 is Õ((n +
∑

i⌈ ti−s
s−2 ⌉)2.5(n +

∑
i⌈ ti−s

s−2 ⌉+
(r +

∑
i⌈ ti−s

s−2 ⌉)s(s + 1)⌊s/2⌋)κ2 log 1/ǫ) = (n + T/s)2.5(n + Tss/2)κ2 log 1/ǫ). To minimize the

complexity, we choose s = 3. By Corollary 5.7, the complexity is Õ((n+T − 3r)2.5(n+T − 3r+
3(T − 2r))κ2 log 1/ǫ) = Õ((n3.5 + T 3.5)κ2 log 1/ǫ).

Remark 5.10. In Step 8 of Algorithm 4.2, we can replace Y = ∅ with X ∩ Y = ∅ so that
Algorithm 5.8 can terminate early.

Example 5.11. n = 5, F = {x1 + x3 + x5, x2 + x3 + 1, x1x4 + x2 + 1, x3x5} When we use
Algorithm 4.2 to solve V(F ,HX), we have the Sdeg(F ∪ HX) = 8, the Macaulay matrix is of
dimension 3894 × 1286, and its condition number is κ = 15.44.

The following lemma shows that we can find Boolean solutions over certain finite fields.

Corollary 5.12. For an equation system F = {f1, . . . , fr} over a finite field Fp for a prime
number p, if all solution of F is Boolean (0 or 1), we can also use Algorithm 5.8 to compute a

solution of F by replacing Fi =
∏⌊ti/2⌋

k=fi(0)
(fi − 2k) with Fi =

∏⌊ti/p⌋
k=fi(0)

(fi − pk) in Step 2.

The following theorem gives the exact complexity for solving Boolean equations, which will
be used in Section 6.

Theorem 5.13. Let F =
⋃t

s=1{fs1, . . . , fsrs} ⊂ R2[X] be a Boolean equation system such
that s = #fsj, T =

∑t
s=1 srs, r =

∑t
s=1 rs. Then we can find a solution of F = 0 in time√

2c((n+T − 3r+2r1+ r2) log2 e+ log2(n+2T − 5r+4r1+2r2))(n+T − 3r+2r1+ r2)
1.5(3n+

9T − 21r+12r1 +5r2+1)κ2⌈log2 1/ǫ⌉, where c is the complexity constant of the HHL algorithm
defined in Corollary 2.4.

Proof. By Corollary 5.7, C(S(F , 3)) consists of r1 monomials, n+T−3r+2r1+2r2 binomials, and
T−2r+r1 polynomials of sparseness 6, and the number of indeterminates is n+T−3r+2r1+r2.
Thus the total sparseness for C(S(F , 3)) is TP = r1+2(n+T −3r+2r1+2r2)+6(T −2r+r1) =
2n + 8T − 18r + 10r1 + 4r2. By Lemma 4.8, the exact complexity for Algorithm 5.8 to find a
solution is

√
2c(log2(r1+n+T −3r+2r1+2r2+T −2r+ r1)+(n+T −3r+2r1+ r2) log2 e)(n+

T − 3r + 2r1 + r2)
1.5((n+ T − 3r + 2r1 + r2) + 1 + (2n+ 8T − 18r + 10r1 + 4r2))κ

2⌈log2 1/ǫ⌉ =√
2c(log2(n+2T − 5r+4r1+2r2)+ (n+T − 3r+2r1+ r2) log2 e)(n+T − 3r+2r1+ r2)

1.5(3n+
9T − 21r + 12r1 + 5r2 + 1)κ2⌈log2 1/ǫ⌉.

5.3 Application to 3-satisfiability problem

Let X = {x1, . . . , xn} be Boolean indeterminates. A 3-SAT problem is to check the satisfiability
of the propositional logic formula yi1 ∨ yi2 ∨ yi3 = 1 for i = 1, . . . , r, where yij = xk or ¬xk
for some k. Decision of 3-SAT is NPC. The 3-SAT problem is equivalent to solve the Boolean
equation system

F = {ȳi1ȳi2ȳi3 : i = 1, . . . , r} ∪ {xk + x̄k + 1 : k = 1, . . . , n}}

17

in R2[X,X], where X = {x̄1, . . . , x̄n}.

Proposition 5.14. For a 3-SAT with r clauses, there is a quantum algorithm to decide its
satisfiability with probability 1− ǫ and with complexity Õ((n2.5(n+ r)κ2 log 1/ǫ).

Proof. It is easy to see that solving the Boolean system F is equivalent to find the Boolean
solutions for the polynomial system in C[X,X],

F1 = {ȳi1ȳi2ȳi3 : i = 1, . . . , r} ∪ {xk + x̄k − 1 : k = 1, . . . , n} ∪ {x2k − xk : k = 1, . . . , n},

that is, the 3-SAT problem is satisfiable if and only if VC(F) 6= ∅. Also note that x+ x̄− 1 = 0
and x2 − x = 0 imply x̄2 − x̄ = 0. F1 consists of n binomials, n trinomials and r monomials.
Thus T = 5n + r, by Lemma 4.8, we can use Algorithm 4.2 to find a Boolean solution in time
Õ(n2.5(n+ 5n+ r)κ2 log 1/ǫ) = Õ(n2.5(n+ r)κ2 log 1/ǫ).

The best classic probabilistic algorithm for 3-SAT was (34)
n given in [22]. In order for our

quantum algorithm to perform better n should be ≥ 64, if κ is not too big.

6 Solving Boolean quadratic equations and cryptanalysis

Cryptanalysis of stream ciphers, block ciphers, certain hash functions, and MPKC can be re-
duced to the solving of multivariate Boolean quadratic equations (BMQ). In this section, we
will apply our quantum algorithm to the analysis of these cryptosystems.

6.1 Quantum algebraic attack against AES

The Advanced Encryption Standard (AES), also known by its original name Rijndael, is a
specification for the encryption of electronic data established by the U.S. National Institute of
Standards and Technology in 2001 [12].

Murphy and Robshaw [21] proposed a method to construct a Boolean equation system,
solving of which consists of an algebraic attack against AES. We will use this approach to
establish a BMQ.

Denote the 32-bit key length of AES as Nk and the number of rounds as Nr. Denote
p, c ∈ F

4Nk×8
2 as the plaintext and the ciphertext of AES, w0 ∈ F

4Nk×8
2 as the key of AES,

wi ∈ F
4Nk×8
2 as the expanded key of AES, w̄i ∈ F

4Nk×8
2 as the image of wi under the S-box map

in the key expansion step, xi ∈ F
4Nk×8
2 as the state after the AddRoundKey step of AES, and

yi ∈ F
4Nk×8
2 as the state after the InvSubBytes step of AES, where xi(j,m) means the m-th bit

at the j-th word of state x for round i. In the key expansion step, several states w̄i are obtained
as the image of wi under the S-box. Then, an algebraic attack on the Nr-rounds AES with key
length Nk is to solve the following BMQ, denoted as AES-(Nk, Nr):

0 = x0(j,m) + p(j,m) + w0(j,m);

0 = xi(j,m) + wi(j,m) +
∑

j′,m′

α(j,m, j′,m′)yi−1(j
′,m′) for i = 1, · · · , Nr − 1;

0 = c(j,m) + wNr(j,m) + yNr−1(5j mod 16,m);

0 = S(xi(j, 0), . . . , xi(j, 7), yi(j, 0), . . . , yi(j, 7)) for i = 0, · · · , Nr − 1;

18

0 = S(wi(j̄, 0), . . . , wi(j̄, 7), w̄i(j̄, 0), . . . , w̄i(j̄, 7)) for j̄ = 4Nk − 4, . . . , 4Nk − 1;

0 = wi(j̄,m) + wi−1(j̄,m) + w̄i−1(j̄ + 13,m) + χ(m, i) for j̄ = 0, 1, 2;

0 = wi(3,m) + wi−1(3,m) + w̄i−1(12,m) + χ(m, i).

For Nk ≤ 6 :

0 = wi(j̄,m) + wi−1(j̄,m) + wi(j̄ − 4,m) for j̄ = 4, . . . , 4Nk − 1.

For Nk > 6 :

0 = S(wi(j̄, 0), . . . , wi(j̄, 7), w̄i(j̄, 0), . . . , w̄i(j̄, 7)) for j̄ = 12, . . . , 15;

0 = wi(j̄,m) + wi−1(j̄,m) + w̄i(j̄ − 4,m) for j̄ = 16, . . . , 19;

0 = wi(j̄,m) + wi−1(j̄,m) + wi(j̄ − 4,m) for j̄ = 4, . . . , 15, 20, . . . , 4Nk − 1,

where j runs from 0 to (4Nk − 1), and m runs from 0 to 7. w̄i(j,m), xi(j,m), and yi(j,m)
are state variables, wi(j,m) are key variables, S is a set of 39 BMQ in F2[x0, . . . , x7, y0, . . . , y7]
representing the Rijndael S-box, which can be found in the Appendix of this paper. χ is the
round constant. Thus x, y, w and w̄ are Boolean indeterminates and other alphabets are known
constants. In the second group of equations, exactly 640 of α(j,m, j′,m′) are 1 for a given i.

The equation set S of the S-box is given in the Appendix (Section 8), which can be simplified
as follows. The original S is a BMQ with total sparseness 1688. By doing Gaussian elimination,
we obtain a BMQ S with with total sparseness 1192. We can introduce 1075 new indetermi-
nates uij to split S into 3-sparse BMQ. Thus P (S, 3) consists of 1331 quadratic binomials, 115
quadratic polynomials, 989 cubic polynomials, and 10 quartic polynomials over C.

Totally, the AES-(Nk, Nr) can be represented by a BMQ with number of indeterminates n =
96NkNr+32Nk+32Nr (ifNk ≤ 6) or n = 96NkNr+32Nk+64Nr (ifNk > 6), number of equations
r = 220NrNk+64Nk+156Nr (if Nk ≤ 6) or r = 220NrNk+64Nk+312Nr (if Nk > 6), and total
sparseness T = 4928NrNk +192Nk +5440Nr (if Nk ≤ 6) or T = 4928NrNk +192Nk +10208Nr

(if Nk > 6). By Theorem 5.13, we have

Proposition 6.1. There is a quantum algorithm to obtain a solution of AES-(Nk, Nr) with com-
plexity (4364NkNr+32Nk+5004Nr)

2.5(40020NkNr+480Nk+45780Nr+1)
√
2 log2 ecκ

2 log2 1/ǫ
(if Nk ≤ 6), or (4364NkNr + 32Nk + 9336Nr)

2.5(40020NkNr + 480Nk + 85512Nr)
√
2 log(4e)

cκ2 log2 1/ǫ) (if Nk > 6) with probability > 1− ǫ, where κ is the condition number of F and c is
the complexity constant of the HHL algorithm.

Set Nk = 4, 6, 8, Nr = 4, 6, 8, 10, 12, 14, and ǫ = 1%. We have the following complexities on
quantum algebraic attack on various AESes. From Table 2, we can see that AES is secure under
quantum algebraic attack only if the condition number κ is large.

AES Nk Nr #Vars #Eqs T-Sparseness Complexity

AES-128 4 4 1792 4400 101376 264.63cκ2

AES-128 4 6 2624 6472 151680 266.68cκ2

AES-128 4 8 3456 8544 201984 268.13cκ2

AES-128 4 10 4288 10616 252288 269.26cκ2

AES-192 6 12 7488 18096 421248 271.83cκ2

AES-256 8 14 11904 29520 696384 274.38cκ2

Table 2: Complexities of the quantum algebraic attack on AES

19

6.2 Quantum algebraic attack against Trivium

Trivium is a synchronous stream cipher designed by Canniére and Preneel [7] in 2005 to provide
a flexible trade-off between speed and gate count in hardware, and reasonably efficient software
implementation, which has been specified as an International Standard under ISO/IEC 29192-3.
Trivium can be represented by the following nonlinear feedback shift registers (NFSR) which
can also be considered as BMQ [26] F :

A(t+ 93) = A(t+ 24) + C(t+ 45) + C(t) + C(t+ 1)C(t+ 2), 0 ≤ t ≤ Nr − 67;

B(t+ 84) = B(t+ 6) +A(t+ 27) +A(t) +A(t+ 1)A2(t+ 2), 0 ≤ t ≤ Nr − 70; (14)

C(t+ 111) = C(t+ 24) +B(t+ 15) +B(t) +B(t+ 1)B(t+ 2), 0 ≤ t ≤ Nr − 67;

z(t) = A(t+ 27) +A(t) +B(t+ 15) +B(t) + C(t+ 45) + C(t), 0 ≤ t ≤ Nr − 1,

where A,B,C are state variables and z is the output. For an initial state Z0 = (A(0), . . . , A(92),
B(0), . . . , B(83), C(0), . . . , C(110)) ∈ F

288
2 , we can generate the key sequence z(0), z(1), . . . , z(Nr

−1) with the above NFSR. Thus, for the Nr-round Trivium, F consists of (3Nr−201) quadratic
polynomials of sparseness 5, and Nr linear polynomials of sparseness 7, and with (3Nr + 87)
indeterminates. Thus, T = 5(3Nr − 201) + 7Nr = 22Nr − 1005.

The algebraic attach on the Nr-round Trivium is to solve the BMQ (14), where z(0), z(1), . . .,
z(Nr − 1) are constants. It is generally believed that for Nr > 288, (14) has a unique solution.

Proposition 6.2. There is a quantum algorithm to find a solution for the Nr-round Trivium
equation system in time 217.22N3.5

r cκ2 log 1/ǫ with probability > 1 − ǫ, where κ is the condition
number of F and c is the complexity constant of the HHL algorithm.

Proof. By Theorem 5.13, the complexity is
√
2c(log2((3Nr+87)+2(22Nr−1005)−5(4Nr−201))+

((3Nr+87)+(22Nr−1005)−3(4Nr−201)) log2 e)((3Nr+87)+(22Nr−1005)−3(4Nr−201)+2r1+
r2)

1.5(3(3Nr+87)+9(22Nr−1005)−21(4Nr−201)+12r1+5r2+1)κ2⌈log2 1/ǫ⌉ =
√
2c(log2(27Nr−

918) + (13Nr − 315) log2 e)(13Nr − 315)1.5(123Nr − 4562)κ2⌈log2 1/ǫ⌉ ≤ 217.22N3.5
r cκ2⌈log2 1/ǫ⌉.

In Table 3, we give the complexities for several Nr assuming ǫ = 1%. From Table 3, we can
see that Trivium is secure under quantum algebraic attack only if the condition number κ is
large.

Round #Vars #Eqs T-Sparseness Complexity

288 951 951 5331 248.11cκ2

576 1815 2103 11667 251.88cκ2

1152 3543 4407 24339 255.50cκ2

2304 6999 9015 49683 259.06cκ2

Table 3: Complexities of the quantum algebraic attack on Trivium

6.3 Quantum algebraic attack against Keccak

Keccak [5], the winner of SHA-3, is the latest member of the Secure Hash Algorithm family of
standards, released by NIST on August 5, 2015. For Keccak-[Nh, b,Nr], we denote Nh, b, and
Nr as the output bit size, the state bit size, and the number of rounds. Let A0(x, y, z) be the
message, Ai(x, y, z) be the state variable after applying the τ function for i-times, and Bi(x, y, z)
be the state variable after applying the π function for i-times, where x, y ∈ Z/5Z, z ∈ Z/wZ,
and w = b/25 = 1, 2, 4, . . . , 64 is the bit length of each word. Then for Keccak-[Nh, b,Nr], we

20

have the following BMQ F [27]:

Bi(3y + x, x, z − r(3y + x, x)) = Ai−1(x, y, z) +
4∑

j=0

Ai−1(x− 1, j, z) +
4∑

j=0

Ai−1(x+ 1, j, z − 1);

Ai(x, y, z) = Bi(x, y, z) + (1−Bi(x+ 1, y, z))Bi(x+ 2, y, z), for x 6= 0 or y 6= 0;

Ai(0, 0, z) = Bi(0, 0, z) + (1−Bi(1, 0, z))Bi(2, 0, z) +RC(z)

for i = 1, . . . , Nr, x, y = 0, . . . , 4, z = 0, . . . , w. In the preimage attack on Keccak, r(3y + x, x)
and RC(z) are known constants, the first Nb of ANr(x, y, z) are the known Hash output, and
Ai(x, y, z) (i < Nr) and Bi(x, y, z) are indeterminates. Thus we have n = 2bNr indeterminates
and r = (2b − 1)Nr + Nh Boolean quadratic equations with total sparseness T = 401Nrw +
101Nh/25− 101w.

Proposition 6.3. For the BMQ Keccak-[Nh, b,Nr], there is a quantum algorithm to find a
preimage in time

√
2c(log2(802Nrw+5Nr+77Nh/25)+(401Nrw+3Nr+26Nh/25) log2 e)(401Nrw

+3Nr + 26Nh/25)
1.5(3609Nrw + 21Nr + 384Nh/25 + 1)κ2⌈log2 1/ǫ⌉ < 218.21N3.5

r b3.5cκ2 log2 1/ǫ
with probability > 1− ǫ, where κ is the condition number of F and c is the complexity constant
of the HHL algorithm.

Proof. We have n = 2bNr, r = (2b − 1)Nr + Nh, and T = 401Nrw + 101Nh/25 − 101w. By
Theorem 5.13, the complexity is

√
2c(log2(2bNr + 2(401Nrw + 101Nh/25 − 101w) − 5((2b −

1)Nr + Nh)) + (2bNr + (401Nrw + 101Nh/25 − 101w) − 3((2b − 1)Nr + Nh)) log2 e)(2bNr +
(401Nrw+101Nh/25−101w)−3((2b−1)Nr +Nh))

1.5(32bNr+9(401Nrw+101Nh/25−101w)−
21((2b−1)Nr +Nh)+1)κ2⌈log2 1/ǫ⌉ ≤

√
2c(log2(802Nrw+5Nr +77Nh/25)+(401Nrw+3Nr +

26Nh/25) log2 e)(401Nrw+3Nr +26Nh/25)
1.5(3609Nrw+21Nr +384Nh/25 + 1)κ2⌈log2 1/ǫ⌉ ≤√

2 log2 ec(401Nrw+26Nh/25)
2.5(3609Nrw+384Nh/25)κ

2⌈log2 1/ǫ⌉ ≤ 218.21N3.5
r b3.5cκ2⌈log2 1/ǫ⌉.

Setting Nh = 224, 256, 384, 512, Nr = 24, b = 1600 and ǫ = 1%, the complexities for various
(Nh, b,Nr) are given in Table 4. From Table 4, we can see that Keccak is secure under quantum
algebraic attack only if the condition number κ is large.

Nh b Nr #Vars #Eqs T-Sparseness Complexity

224 1600 24 76800 77000 610377 273.12cκ2

256 1600 24 76800 77032 610506 273.12cκ2

384 1600 24 76800 77160 611023 273.12cκ2

512 1600 24 76800 77288 611540 273.12cκ2

Table 4: Complexities of the quantum preimage attack on Keccak

The best known traditional attacks on Keccak were given in [25] and [17]. In [25], practical
collision attacks against the 5-round Keccak-224 and an instance of the 6-round Keccak collision
challenge were given. In [17], key recovery attacks were given for 4- to 8-round Keccak.

6.4 Quantum algebraic attack against MPKC

Multivariate Public Key Cryptosystem (MPKC) is one of the candidates for post-quantum
cryptography [13]. An MPKC is generally constructed as follows

H = L ◦G ◦R = (h1(X), . . . , hr(X)) (15)

21

where L ∈ GL(m,F2), R ∈ GL(n,F2), and G : Fn
2 → F

m
2 is a quadratic map whose inversion

can be efficiently computed. L and R are the secret keys and H is the public map. The direct
algebraic attack against the MPKC is to solve the BMQ:

y1 = h1(X), . . . , yr = hr(X) (16)

where X = (x1, . . . , xn) is the plaintext and Y = (y1, . . . , yr) is the known ciphertext. Note that
the BMQ in (16) are dense. We have

Proposition 6.4. For dense BMQ F = {f1, . . . , fr} ⊂ R2[X], there is a quantum algorithm to
obtain a solution in time

√
2c((n+(n2+3n− 4)r/2) log2 e+ log2(n+(n2+3n− 3)r))(n+(n2+

3n− 4)r/2)1.5(3n + (9n2 + 27n − 24)r/2 + 1)κ2⌈log2 1/ǫ⌉ = O(n7r3.5κ2 log 1/ǫ) with probability
> 1 − ǫ, where κ is the condition number of F and c is the complexity constant of the HHL
algorithm.

Proof. If F is a dense BMQ, T = (n + 1)(n + 2)r/2. By Theorem 5.13, we can find a solution
of F = 0 in time

√
2c(log2(n+ (n+ 1)(n + 2)r − 5r) + (n+ (n+ 1)(n + 2)r/2 − 3r) log2 e)(n +

T − 3r)1.5(3n+9(n+1)(n+2)r/2− 21r+1)κ2⌈log2 1/ǫ⌉ =
√
2c(log2(n+(n2 +3n− 3)r)+ (n+

(n2 + 3n − 4)r/2) log2 e)(n + (n2 + 3n− 4)r/2)1.5(3n+ (9n2 + 27n − 24)r/2 + 1)κ2⌈log2 1/ǫ⌉ =
Õ(n7r3.5κ2 log 1/ǫ).

Corollary 6.5. Suppose r = γn. Then there is a quantum algebraic attack against MPKC in
time Õ(γn10.5κ2 log 1/ǫ) with probability > 1− ǫ, where κ is the condition number of (16).

Related to this problem, the BMQ Challenge is to solve a given random BMQ withm = 2n or
n = 1.5m over the finite fields F2, F28 [28]. Considering the field F28 = F2[α]/(α

8+α4+α3+α+1),
each variable x over F28 is a sum of eight Boolean variables, that is x =

∑7
i=0 xiα

i. Then
F = {f1, . . . , fr} ⊂ F28 [x1, . . . , xn] can be rewritten as F1 = {f11, . . . , f18, f21, . . . , fm8} ⊂
R2[x11, . . . , x18, x21, . . . , xn8], where xij and fij denote the j-th bit of xi and fi. As a conse-
quence, equation solving over F28 has the same complexity as Boolean equation solving. For
the BMQ challenge [28], m = 2n or n = 1.5m implies the complexity is Õ(T 3.5κ2 log 1/ǫ) <
Õ(n10.5κ2 log 1/ǫ).

The best known deterministic algebraic algorithms to solve the BMQ are the Gröbner basis
method [3] which has complexity O(20.841n) under certain regularity condition for the equation
system, and the multiplication free characteristic set method [15] which has bit complexity O(2n)
for general BMQ. Although exponential in n, these methods had been used to solve BMQ from
cryptanalysis with n = 128.

Remark 6.6. From the above discussion, we can see that AES, Trivium, Keccak, and MPKC
are secure under quantum algebraic attack only if the condition numbers of the related Boolean
equation systems are large. This suggests that a possible new quantum criterion for cryptosystem
design: the Boolean equation system of the cryptosystem has a large condition number.

7 Conclusion

We give two quantum algorithms to find the Boolean solutions of a polynomial system in C[X]
and to solve Boolean equations in R2[X] in any given probability, whose complexities are poly-
nomial in the number of variables, the total sparseness of the equation system, and the condition
number of the equation system. As a consequence, we achieved exponential speedup for sparse
Boolean equation solving if the condition number of the equation system is small.

22

The main idea of the algorithm is to solve the Macaulay linear system of the equation system
using the modified HHL algorithm and to obtain the Boolean solutions based on the properties
of quantum solution state.

The new quantum algorithm is used to give quantum algebraic attack against major cryp-
tosystems AES, Trivium, and SHA-3/Keccak and show that these ciphers are secure under
quantum algebraic attack only if the condition numbers of their equation systems are large.
Similar results hold for MPKC, which is a candidate for post-quantum cryptosystems.

We also use the quantum algorithms to three famous problems from computational theory:
the 3-SAT problem, the graph isomorphism problem, and the subset sum problem and show
that the complexities to solve these problems are polynomial in the input size and the condition
number of their corresponding equation system.

One of the major problems for future study is on the condition number: either to estimate
the condition number of the cryptosystems and the 3-SAT problem, or to find new quantum
method to solve Boolean systems, which has less relation with the condition number. It is also
interesting to extend the method proposed in this paper to more general equation systems, such
as equation solving over the field of complex numbers.

References

[1] Aharonov, D. and Ta-Shma, A., Adiabatic quantum state generation and statistical zero
knowledge, Proc. STOC’03, 20-29, ACM Press, New York, 2003.

[2] Ambainis, A., Variable time amplitude amplification and a faster quantum algorithm for
solving systems of linear equations, Proc. STACS, 636-647, 2012.

[3] Bardet, M., Faugère, J.C., Salvy, B., Spaenlehauer, P.J., On the complexity of solving
quadratic Boolean systems, Journal of Complexity, 29(1), 53-75, 2013.

[4] Berry, D.W., Childs, A.M., Kothari, R., Hamiltonian simulation with nearly optimal de-
pendence on all parameters, Proc. 56th FOCS, 792-809, 2015.

[5] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Keccak sponge function family main
document. Submission to NIST (Round 2) 3 (2009): 30.

[6] Caminata, A. and Gorla, E., Solving multivariate polynomial systems and an invariant from
commutative algebra, arXiv1706.06319, 2017.

[7] Canniére, C.D., Preneel, B., Trivium, in New Stream Cipher Designs: The eSTREAM
Finalists, LNCS, vol. 4986, 244-266, Springer, 2008.

[8] Cao, Y., Daskin, A., Frankel, S., Kais S., Quantum circuit design for solving linear systems
of equations, Journal of Molecular Physics, 1675-1680, 2012.

[9] Childs, A.M., Quantum algorithms: equation solving by simulation, Nature Physics, 5(12),
861-861, 2009.

[10] Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A., Exponential
algorithmic speedup by a quantum walk, Proc. STOC’03, 59-68, ACM Press, New York,
2003.

[11] Courtois, N., Klimov, A., Patarin, J., Shamir, A., Efficient algorithms for solving overde-
fined systems of multivariate polynomial equations, Eurocrypt’00, LNCS, vol. 1807, 392-407,
Springer, 2000.

23

[12] Daemen, J. and Rijmen, V., AES Proposal: Rijndael, NIST, 1999.

[13] Ding, J., Gower, J.E., Schmidt, D.S., Multivariate Public Key Cryptosystems, Springer,
2006.

[14] Faugere, J.C., A new efficient algorithm for computing Gröbner bases (F4), J. Pure Appl.
Algebra, 139, 61-88, 1999.

[15] Gao, X.S. and Huang, Z., Characteristic set algorithms for equation solving in finite fields,
Journal of Symbolic Computation, 47, 655-679, 2012.

[16] Harrow, A.W., Hassidim, A., Lloyd, S., Quantum algorithm for linear systems of equations.
Physical Review Letters, 103(15): 150502, 2009.

[17] Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J., Conditional cube attack on reduced-
round Keccak sponge function, EUROCRYPT 2017, 259-288, Springer, 2017.

[18] Huang, Z., Sun Y., Lin D., On the efficiency of solving boolean polynomial systems with
the characteristic set method, arXiv:1405.4596, 2016.

[19] Lazard, D., Gröbner bases, Gaussian elimination and resolution of systems of algebraic
equations, Proc. Eurocal 83, LNCS, vol. 162, 146-156, Springer, Berlin, 1983.

[20] Macaulay, F.S., Some formulas in elimination, Proc. of the London Mathematical Society,
35(1), 3-38, 1902.

[21] Murphy, S. and Robshaw, M., Essential algebraic structure within the AES. CRYPTO’02,
1-16, 2002.

[22] Schöning, U., A probabilistic algorithm for k-SAT and constraint satisfaction problems,
Proc. FOCS’99, 410-414, 1999.

[23] Shewchuk, J.R., An introduction to the conjugate gradient method without the agonizing-
pain, Tech. Rep. CMU-CS-94-125, Carnegie Mellon University, Pittsburgh, Pennsylvania,
1994.

[24] Shannon, C.E., A mathematical theory of communication, Bell Syst. Tech. J., 27(3), 379-
423 and 623-656, 1948.

[25] Song, L., Liao, G., Guo, J., Non-full Sbox linearization: applications to collision attacks on
round-reduced Keccak. CRYPTO’17, 428-451, Springer, 2017.

[26] Teo, S.G., Wong, K.K.H., Bartlett, H., Simpson L, Dawson, E., Algebraic analysis
of Trivium-like ciphers. Proceedings of the Twelfth Australasian Information Security
Conference-Volume 149. Australian Computer Society, Inc., 77-81, 2014.

[27] Wu, C.K. and Feng, D., Boolean Functions and their Applications in Cryptography,
Springer, 2016.

[28] Yasuda, T., Dahan, X., Huang, Y.J., Takagi, T., Sakurai, K., MQ Challenge: hardness eval-
uation of solving multivariate quadratic problems, The NIST Workshop on Cybersecurity
in a Post-Quantum World, 2015, https://www.mqchallenge.org/.

24

http://arxiv.org/abs/1405.4596

8 Appendix. Equations for the AES S-Box

We list the 39 Boolean quadratic polynomials for the AES S-Box used in this paper.

x5x7+x5x6+x3x7+x3x6+x2x4+x1x7+x1x6+x1x5+x1x3+x1x2+x0x7+x0x3+x0x2+
x6y7 + x7y6 + x6y6 + x7y5 + x5y5 + x7y4 + x1y4 + x2y3 + x0y3 + x6y2 + x4y2 + x3y2 + x0y2 +
x4y0 + x2y0 + x7 + x5 + x3 + y7 + y2 + y0 + 1,

x6x7+x5x7+x4x7+x4x6+x4x5+x3x4+x2x5+x1x7+x1x6+x1x5+x1x4+x1x3+x1x2+
x0x5+x0x1+x6y6+ y5y7+x3y4+ y4y7+ y4y5+x5y3+x0y3+ y3y6+ y3y4+x3y2+x0y2+ y2y4+
y2y3 + x5y0 + x3y0 + x1y0 + y0y7 + y0y3 + y0y1 + x5 + x3 + x0 + y2 + 1,

x1y7+x0y7+y6y7+x7y5+x6y5+y5y7+x7y4+x5y3+x2y3+y3y6+x2y2+x0y2+y2y5+x6y1+
x4y1+x1y1+y1y2+x6y0+x5y0+x4y0+y0y7+y0y6+y0y5+y0y4+y0y3+x3+x1+y3+y2+y1+1,

x6x7 +x4x6+ x3x7 +x2x7+ x1x4 +x0x6 + x0x3 +x6y7 +x4y7+x3y7+x7y6+x3y6+x7y5+
x7y4 + x1y4 + x5y3 + x4y3 + x1y3 + x6y2 + x2y2 + x6y1 + x5y1 + x3y1 + x1y1 + x0y1 + x7y0 +
x6y0 + x5y0 + x3y0 + x2y0 + x1y0 + x6 + x1,

x6y7 + x5y7 + x1y7 + x0y7 + x5y6 + x4y6 + x3y6 + x4y4 + x3y4 + x2y4 + x4y3 + x3y3 + y3y5 +
x2y2+ y2y7+ y2y4+ y2y3+x7y1+x4y1+x3y1+x1y1+ y1y7+ y1y6+ y1y5+ y1y2+x7y0+x5y0+
x4y0 + x3y0 + y0y4 + y0y3 + y0y2 + x6 + x4 + x3 + y2,

x2y7 + y5y6 + x1y4 + x7y3 + x2y3 + x1y3 + x0y3 + y3y6 + y3y4 + x4y2 + x2y2 + x0y2 + y2y6 +
y2y5+ y2y3+x5y1+x3y1+ y1y7+ y1y5+ y1y4+ y1y3+ y1y2+x5y0+x4y0+x3y0+x0y0+ y0y6+
y0y1 + x7 + x6 + x3 + x2 + x1 + y4 + y2 + y1 + y0,

x5y7 + x3y6 + x2y6 + x0y6 + x6y5 + x5y5 + x0y5 + x6y4 + x5y4 + x3y4 + x2y4 + x0y4 + y4y7 +
y3y6+ y3y5+x3y2+x2y2+x0y2+ y2y7+ y2y6+ y2y5+x3y1+x2y1+ y1y7+ y1y6+ y1y3+x5y0+
x4y0 + x1y0 + y0y7 + y0y2 + x6 + x1 + y4 + y3 + y1,

x6y7 + x3y7 + x0y7 + x2y6 + x4y4 + x2y4 + x0y4 + x7y3 + x6y3 + x3y3 + x2y3 + x1y3 + x0y3 +
x5y2 + x2y2 + x1y2 + x3y1 + x2y1 + x1y1 + x3y0 + x6 + x2 + x1 + x0 + y2,

x7y7 + x4y7 + x1y7 + x7y6 + x6y6 + x1y6 + y6y7 + x7y5 + x6y5 + x2y5 + x0y5 + x6y4 + x4y4 +
x2y4+ y4y5+x4y3+x3y3+x2y3+x1y3+x0y3+ y3y6+ y3y5+x3y2+ y2y4+x6y1+x5y1+x4y1+
y1y5 + y1y2 + x6y0 + x2y0 + x1y0 + y0y6 + y4 + y3,

x4y7 + x3y7 + x4y6 + x2y6 + x1y6 + x0y4 + x3y3 + x1y3 + x0y3 + x7y2 + x3y2 + x2y2 + x1y2 +
x0y2 + x7y1 + x6y1 + x5y1 + x4y1 + x3y1 + x0y1 + x4 + x2 + x1 + y2,

x3x6 + x2x5 + x1x4 + x1x2 + x0x4 +x0x1 +x4y6 + x2y6 +x1y6 +x7y5+ x7y4 + x2y4 +x6y3+
x4y3+x3y3+x2y3 +x7y2+x0y2+x4y1+x3y1 +x5y0+x2y0+x1y0+x4 +x1+ y4 + y3+ y0+1,

x4x7+x2x3 +x1x5+x1x4+x0x7 +x0x6+x0x5+x0x4+x0x1 +x7y7+x4y7+x1y6+x2y4+
x1y4 + x0y4 + x7y3 + x4y3 + x3y3 + x4y2 + x3y2 + x0y2 + x7y1 + x5y1 + x2y1 + x1y1 + x0y1 +
x1y0 + x0y0 + x7 + x1 + x0 + y2,

x6x7+x4x5+x3x7+x3x5+x2x5+x2x4+x2x3+x1x7+x0x6+x0x4+x2y7+x0y7+x1y6+
x6y5 + x2y4 + x6y3 + x5y3 + x2y3 + x6y2 + x4y2 + x3y2 + x2y2 + x1y2 + x7y1 + x5y1 + x6y0 +
x5y0 + x4y0 + x3y0 + x0y0,

x5x7 + x3x6 + x1x7 + x1x2 + x0x4 +x0x3 +x1y7 + x2y6 +x1y6 +x6y5+ x4y5 + x2y5 +x0y4+
x5y3 + x2y3 + x6y2 + x5y2 + x1y2 + x0y2 + x7y1 + x6y0 + x5y0 + x0y0 + x6 + x1 + y6 + y2 + y1,

x1y7 + x0y7 + x2y6 + x6y5 + x2y5 + x4y4 + x3y4 + x2y4 + x1y4 + x0y4 + x5y3 + x2y3 + x1y3 +
x7y2 + x4y2 + x3y2 + x1y2 + x6y1 + x3y1 + x2y1 + x1y1 + x0y1 + x5y0 + x0y0 + x3 + y2,

x5x7 + x3x6 + x1x7 + x1x2 + x0x4 +x0x3 +x6y7 + x3y7 +x0y7 +x4y6+ x5y5 + x2y5 +x4y4+
x3y3+x1y2+x0y2+x7y1+x5y1+x4y1+x2y1+x7y0+x6y0+x1y0+x6+x5+x4+x2+x0+ y7,

x7y7 + x7y6 + x6y6 + x4y6 + x2y6 + x1y6 + x7y5 + x2y5 + x7y4 + x1y4 + x0y4 + y4y6 + x7y3 +

25

x3y3+ y3y5+ y3y4+x7y2+x4y2+x3y2+ y2y4+ y2y3+ y1y6+x3y0+x2y0+x1y0+ y0y6+ y0y4+
y0y2 + y0y1 + x5 + x4 + x3 + x1 + y4 + y2 + y1,

x7y6 + y6y7 + x7y5 + x3y5 + y5y7 + x7y4 + x0y4 + y4y7 + y4y5 + x6y3 + x4y3 + x3y3 + x1y3 +
y3y7+ y3y6+ y3y5+ y3y4+x6y2+x5y2+x4y2+x1y2+x0y2+ y2y5+x6y1+x5y1+x4y1+x0y1+
y1y7 + y1y4 + y1y2 + x5y0 + x4y0 + y0y7 + y0y5 + y0y4 + x0 + y0,

x6y6 + x1y6 + x5y5 + x3y4 + x0y4 + x7y3 + x6y3 + x5y3 + x1y3 + x0y3 + x7y2 + x7y1 + x6y1 +
x4y1 + x3y1 + x0y1 + x4y0 + x2y0 + x7 + x6 + x4 + x3 + x0 + y2,

x6x7+x5x7+x4x6+x3x7+x2x7+x2x5+x1x7+x0x6+x0x1+x7y7+x3y7+x1y7+x5y6+x0y4+
x6y3+x1y3+x7y2+x6y2+x5y2+x4y2+x3y2+x4y1+x2y1+x5y0+x3y0+x5+x2+x1+x0+y3+y2,

x0y7 + x2y6 + x0y6 + x5y5 + x0y5 + x6y4 + x3y4 + x2y4 + x0y4 + x7y3 + x6y3 + x4y3 + x3y3 +
x2y3 + x4y2 + x3y2 + x4y1 + x2y1 + x7y0 + x2y0 + x0y0 + x7 + x4 + x2 + x1 + y4 + y1 + y0,

x5x7+x5x6+x4x6+x3x5+x2x6+x2x5+x1x7+x1x6+x0x7+x0x6+x0x3+x0x1+x6y7+x3y6+
x3y4+x0y4+x7y3+x4y3+x3y3+x5y2+x4y2+x6y1+x4y1+x2y1+x1y1+x1y0+x5+x0+y4+y2,

x5x7+x5x6+x3x7+x3x4+x2x6+x2x4+x1x4+x1x3+x1x2+x0x6+x7y7+x6y7+x4y7+
x3y7 + x1y6 + x1y4 + x7y3 + x3y3 + x2y3 + x6y2 + x2y2 + x0y2 + x7y1 + x5y1 + x4y1 + x3y1 +
x6y0 + x3y0 + x1y0 + x6 + x3 + x2 + y4,

x5x7+x4x6 +x4x5+x3x5+x2x7 +x2x4+x2x3+x0x4+x0x1 +x4y6+x2y6+x7y5+x7y4+
x6y4 + x1y4 + x6y3 + x5y3 + x2y3 + x1y3 + x7y2 + x5y2 + x7y1 + x6y1 + x0y1 + x4y0 + x3y0 +
x1y0 + x3 + x1 + y4 + y3,

x5x7+x4x6+x3x7+x3x5+x3x4+x2x4+x1x6+x1x3+x1x2+x0x7+x4y7+x3y7+x0y7+
x4y6 + x2y6 + x0y6 + x5y5 + x0y5 + x6y4 + x6y3 + x6y2 + x4y2 + x3y2 + x1y2 + x5y1 + x4y1 +
x5y0 + x1y0 + x0y0 + x7 + x5 + y1 + y0,

x6x7+x4x6+x4x5+x2x6+x2x5+x2x3+x1x7+x1x5+x1x4+x1x3+x0x2+x1y7+x2y6+x1y6+
x6y5+x2y5+x2y4+x3y3+x7y2+x3y2+x2y2+x7y1+x5y1+x1y1+x7+x3+x0+y6+y4+y2+y1,

x7y5 + x7y4 + x2y4 + x7y3 + x6y3 + x0y3 + x5y2 + x4y2 + x0y2 + x7y1 + x3y1 + x2y1 + x0y1 +
x7y0 + x5y0 + x4y0 + x2y0 + x1y0 + x2 + x1 + x0 + y4 + y2 + y1 + 1,

x5x6+x3x7+x3x6+x2x5+x2x4+x1x6+x1x5+x1x4+x1x3+x1x2+x0x7+x0x2+x0x1+
x5y7 + x1y6 + x4y4 + x2y4 + x0y4 + x5y3 + x4y3 + x1y3 + x0y2 + x5y1 + x2y1 + x1y1 + x3y0 +
x0y0 + x6 + x5 + x1 + y3 + y2,

x6y7 + x3y7 + x1y7 + x6y6 + x5y6 + x1y6 + x5y5 + x1y5 + x6y4 + x6y3 + x5y3 + x4y3 + x3y2 +
x7y1 + x6y1 + x1y1 + x6y0 + x3y0 + x2y0 + x5 + y7 + y3 + y2 + y1 + y0,

x5x6+x4x6 +x3x6+x3x5+x3x4 +x1x7+x1x5+x0x3+x0x2 +x5y7+x1y6+x6y5+x2y5+
x2y4 + x0y4 + x6y2 + x4y2 + x2y2 + x1y2 + x6y1 + x5y1 + x4y1 + x2y1 + x5y0 + x3y0 + x7 + x6 +
x4 + x0 + y6 + y4 + y2 + 1,

x5y7 + x4y7 + x3y7 + x1y7 + x0y7 + x7y6 + x4y6 + x7y5 + x3y5 + x7y4 + x4y4 + x3y4 + x7y3 +
x6y3+x4y3+x3y3+x1y3+x6y2+x5y2+x2y2+x2y1+x7y0+x3y0+x2y0+x1y0+ y6+ y2+ y0,

x7y7 + x4y7 + x1y7 + x6y6 + x5y6 + x5y5 + x2y3 + x1y3 + x0y3 + x5y2 + x4y2 + x2y2 + x1y2 +
x7y1 + x0y1 + x6y0 + x5y0 + x4y0 + x0y0 + x6 + x2 + x1 + x0 + y7,

x7y7 + x4y7 + x2y7 + x4y6 + x6y5 + x5y5 + x1y5 + x6y4 + x4y4 + x7y3 + x6y3 + x6y2 + x5y2 +
x0y2 + x6y1 + x2y1 + x6y0 + x4y0 + x5 + x4 + x3 + x1 + x0 + y7 + y4 + y2,

x4x6+x4x5+x3x5+x3x4+x2x7+x2x6+x2x4+x2x3+x1x6+x1x5+x1x4+x1x2+x0x7+
x0x6 + x0x2 + x0x1 + x0y5 + x6y4 + x3y4 + x0y4 + x6y3 + x3y3 + x2y3 + x6y2 + x5y2 + x4y2 +
x0y2 + x7y1 + x5y1 + x0y0 + x7 + y1 + 1,

x6y7 + y6y7 + x7y5 + y5y7 + x7y4 + y4y7 + x7y3 + x6y3 + x2y3 + x1y3 + y3y5 + y3y4 + x7y2 +
x6y2+x0y2+ y2y3+x4y1+x3y1+x2y1+x1y1+x0y1+ y1y5+ y1y2+x7y0+x1y0+ y0y7+ y0y6+

26

y0y3 + y0y1 + x2 + y5 + y4,

x4y7 + x3y7 + x1y7 + x5y6 + x4y6 + x1y6 + x4y5 + x0y5 + x7y4 + x6y4 + x4y4 + x2y4 + x1y4 +
x5y3 + x4y3 + x3y3 + x0y3 + x3y2 + x0y1 + x6y0 + x1y0 + x6 + x4 + x2 + y6 + y2 + y1,

x5x7+x4x7+x2x5+x2x3+x1x7+x1x5+x0x7+x0x6+x0x5+x0x4+x0x3+x4y5+x6y4+x5y3+
x4y3+x0y3+x7y2+x3y2+x2y2+x5y1+x3y1+x0y1+x5y0+x3y0+x0y0+x7+x5+x1+x0+y4+y0+1,

x7y7 + x4y7 + x0y7 + x6y6 + x5y6 + x0y6 + x0y5 + x6y4 + x5y4 + x3y4 + x7y3 + x6y3 + x0y3 +
x7y2 + x3y2 + x2y2 + x6y1 + x3y1 + x1y1 + x5y0 + x4y0 + x3y0 + x1y0 + x3 + y3,

x4x5+x3x7+x3x6+x3x4+x2x7+x2x5+x2x3+x1x6+x1x4+x1x3+x0x7+x1y7+x2y6+x1y6+
x6y5+x2y5+x4y4+x3y4+x7y3+x3y2+x5y1+x2y1+x0y1+x4y0+x3y0+x0y0+x3+y3+y2+y1+y0.

27

	1 Introduction
	1.1 Main results
	1.2 Technical contribution and relation with existing work

	2 A modified HHL algorithm
	3 Quantum pseudo-solving of polynomial systems over C
	3.1 Sparseness of the modified Macaulay matrices
	3.2 Solution of the Macaulay linear system
	3.3 A quantum algorithm for pseudo-solving of polynomial systems

	4 Find Boolean solutions for polynomial systems in C[X]
	4.1 A quantum algorithm to find Boolean solutions
	4.2 Obtain all the Boolean solutions
	4.3 Computing Boolean solutions to linear systems and applications

	5 Solving Boolean equation systems
	5.1 Reduce Boolean systems to polynomial systems over C
	5.2 Quantum algorithm for Boolean equation solving
	5.3 Application to 3-satisfiability problem

	6 Solving Boolean quadratic equations and cryptanalysis
	6.1 Quantum algebraic attack against AES
	6.2 Quantum algebraic attack against Trivium
	6.3 Quantum algebraic attack against Keccak
	6.4 Quantum algebraic attack against MPKC

	7 Conclusion
	8 Appendix. Equations for the AES S-Box

