5 research outputs found

    Every graph occurs as an induced subgraph of some hypohamiltonian graph

    Get PDF
    We prove the titular statement. This settles a problem of Chvátal from 1973 and encompasses earlier results of Thomassen, who showed it for K_3, and Collier and Schmeichel, who proved it for bipartite graphs. We also show that for every outerplanar graph there exists a planar hypohamiltonian graph containing it as an induced subgraph

    On almost hypohamiltonian graphs

    Get PDF
    A graph GG is almost hypohamiltonian (a.h.) if GG is non-hamiltonian, there exists a vertex ww in GG such that G−wG - w is non-hamiltonian, and G−vG - v is hamiltonian for every vertex v≠wv \ne w in GG. The second author asked in [J. Graph Theory 79 (2015) 63--81] for all orders for which a.h. graphs exist. Here we solve this problem. To this end, we present a specialised algorithm which generates complete sets of a.h. graphs for various orders. Furthermore, we show that the smallest cubic a.h. graphs have order 26. We provide a lower bound for the order of the smallest planar a.h. graph and improve the upper bound for the order of the smallest planar a.h. graph containing a cubic vertex. We also determine the smallest planar a.h. graphs of girth 5, both in the general and cubic case. Finally, we extend a result of Steffen on snarks and improve two bounds on longest paths and longest cycles in polyhedral graphs due to Jooyandeh, McKay, {\"O}sterg{\aa}rd, Pettersson, and the second author.Comment: 18 pages. arXiv admin note: text overlap with arXiv:1602.0717

    On almost hypohamiltonian graphs

    Get PDF
    A graph G is almost hypohamiltonian (a.h.) if G is non-hamiltonian, there exists a vertex w in G such that G - w is non-hamiltonian, and G - v is hamiltonian for every vertex v \ne w in G. The second author asked in [J. Graph Theory 79 (2015) 63–81] for all orders for which a.h. graphs exist. Here we solve this problem. To this end, we present a specialised algorithm which generates complete sets of a.h. graphs for various orders. Furthermore, we show that the smallest cubic a.h. graphs have order 26. We provide a lower bound for the order of the smallest planar a.h. graph and improve the upper bound for the order of the smallest planar a.h. graph containing a cubic vertex. We also determine the smallest planar a.h. graphs of girth 5, both in the general and cubic case. Finally, we extend a result of Steffen on snarks and improve two bounds on longest paths and longest cycles in polyhedral graphs due to Jooyandeh, McKay, Östergård, Pettersson, and the second author
    corecore