2 research outputs found

    The Telecommunications and Data Acquisition Report

    Get PDF
    Archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are presented. Activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) related to DSN advanced systems, systems implementation, and DSN operations are addressed. In addition, recent developments in the NASA SETI (Search for Extraterrestrial Intelligence) sky survey are summarized

    Sequences With Low Correlation Over a Nonbinary Alphabet

    No full text
    Doctor์˜์‚ฌ๋ถˆ๊ทœ์น™ ์ˆ˜์—ด(pseudorandom sequence)์€ ๋Œ€์—ญํ™•์‚ฐ(spread spectrum), ์ŠคํŠธ๋ฆผ ์•”ํ˜ธ(stream cipher), ๋ ˆ์ด๋‹ค ๋ ˆ์ธ์ง•(ranging), ์ฑ„๋„ ์ถ”์ • ๋ฐ ๋™๊ธฐ ํš๋“ ๋“ฑ์„ ๋น„๋กฏํ•œ ํ†ต์‹  ์‹œ์Šคํ…œ ๋ฐ ๋””์ง€ํ„ธ ์‹ ํ˜ธ์ฒ˜๋ฆฌ ๋ถ„์•ผ์— ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ ๋‹ค์ค‘ ์‚ฌ์šฉ์ž ์ ‘์†์„ ์œ„ํ•œ ๋Œ€์—ญ ํ™•์‚ฐ ์ˆ˜์—ด(spreading sequence)์€ ๋Œ€์—ญ ํ™•์‚ฐ ํ†ต์‹  ๊ธฐ์ˆ ์„ ๋ฐ”ํƒ•์œผ๋กœ ๊ตฌํ˜„๋˜๋Š” ํ†ต์‹  ์‹œ์Šคํ…œ๋“ค์˜ ํ•ต์‹ฌ ์š”์†Œ๋ผ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€ ๊ด€์ ์— ๋”ฐ๋ฅธ MM์ง„ ์•ŒํŒŒ๋ฒณ ์ƒ์˜ ๋‚ฎ์€ ์ƒ๊ด€ ์ˆ˜์—ด์— ๊ด€ํ•œ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋“ค์„ ์ •๋ฆฌํ•˜๊ณ  ์ƒˆ๋กœ์šด ์ˆ˜์—ด๊ตฐ์„ ์„ค๊ณ„ํ•œ๋‹ค. ์ฒซ์งธ๋Š” ์ง์ ‘์ˆ˜์—ด ๋ถ€ํ˜ธ๋ถ„ํ•  ๋‹ค์ค‘์ ‘์†(DS-CDMA, direct-sequence code-division multiple-access) ์‹œ์Šคํ…œ์— ์‚ฌ์šฉ๋˜๋Š” ๋‚ฎ์€ ์ƒ๊ด€(correlation)์„ ๊ฐ–๋Š” MM์ง„ PSK (phase-shift keying) ์„ฑ์ขŒ์ƒ์˜ ๋‹ค์ƒ ์ˆ˜์—ด์ด๋ฉฐ ๋‘˜์งธ๋Š” ์ฃผํŒŒ์ˆ˜๋„์•ฝ ๋ถ€ํ˜ธ๋ถ„ํ•  ๋‹ค์ค‘์ ‘์†(FH-CDMA, frequency-hopping code-division multiple-access) ์‹œ์Šคํ…œ์— ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ๋‚ฎ์€ ํ•ด๋ฐ ์ƒ๊ด€(Hamming correlation)์„ ๊ฐ–๋Š” ๋น„์ด์ง„ ์ˆ˜์—ด์ด๋‹ค.์ง์ ‘์ˆ˜์—ด ๋ถ€ํ˜ธ๋ถ„ํ•  ๋‹ค์ค‘์ ‘์† ์‹œ์Šคํ…œ์— ์‚ฌ์šฉ๋˜๋Š” ํ™•์‚ฐ ์ˆ˜์—ด๊ตฐ์€ ๋™๊ธฐ ํš๋“์„ ์œ„ํ•ด ๋‚ฎ์€ ์ž๊ธฐ์ƒ๊ด€(autocorrelation)์„ ๊ฐ€์ ธ์•ผ ํ•˜๋ฉฐ MAI (multiple-access interference)์˜ ์˜ํ–ฅ์„ ์ตœ์†Œ๋กœ ํ•˜๊ธฐ ์œ„ํ•ด ๋‚ฎ์€ ์ƒํ˜ธ์ƒ๊ด€(crosscorrelation)์„ ๊ฐ–์•„์•ผ ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธฐ์กด์— ์ž˜ ์•Œ๋ ค์ง„ ํ™•์‚ฐ ์ˆ˜์—ด๋“ค์€ ๋Œ€๋ถ€๋ถ„ BPSK ํ˜น์€ QPSK ๋ณ€์กฐ ์ƒ์˜ ์ˆ˜์—ด๋“ค์ด๋ฉฐ ์ˆ˜์—ด ๊ธธ์ด์— ๋น„ํ•ด ์ž‘์€ ์ž„์˜์˜ ์ •์ˆ˜ MM์— ๋Œ€ํ•˜์—ฌ MM-PSK ๋ณ€์กฐ์— ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋Š” MM์ง„ ์ˆ˜์—ด์— ๊ด€ํ•œ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” ๋งค์šฐ ๋ถ€์กฑํ•œ ์‹ค์ •์ด๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” MM-PSK๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ํ†ต์‹  ์‹œ์Šคํ…œ์— ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋Š” MM์ง„ ์ˆ˜์—ด์— ๊ด€ํ•œ ์•„๋ž˜์˜ ์—ฐ๊ตฌ ๋‚ด์šฉ๋“ค์„ ์†Œ๊ฐœํ•œ๋‹ค.์†Œ์ˆ˜ pp์™€ ์–‘์˜ ์ •์ˆ˜ mm์— ๋Œ€ํ•ด ์ฃผ๊ธฐ๊ฐ€ pp์ธ MM์ง„ ๋ฉฑ์ž‰์—ฌ๋ฅ˜ ์ˆ˜์—ด(power residue sequence)์˜ ์ƒ์ˆ˜๊ณฑ(constant multiple) ์ˆ˜์—ด๊ฐ„ ์ƒํ˜ธ์ƒ๊ด€์€ p+2\sqrt p +2๋กœ ์ƒ๊ณ„๋˜๋ฉฐ ์ฃผ๊ธฐ๊ฐ€ pmโˆ’1p^m-1์ธ MM์ง„ Sidel'nikov ์ˆ˜์—ด์˜ ์ƒ์ˆ˜๊ณฑ ์ˆ˜์—ด๊ฐ„ ์ƒํ˜ธ์ƒ๊ด€์€ pm+3\sqrt {p^m} +3์œผ๋กœ ์ƒ๊ณ„๋œ๋‹ค๋Š” ์‚ฌ์‹ค์ด ์•Œ๋ ค์ ธ์žˆ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๋จผ์ € ์ด๋Ÿฌํ•œ ์ˆ˜์—ด๋“ค์˜ ์ƒํ˜ธ์ƒ๊ด€ ํ•จ์ˆ˜๊ฐ€ ์ž์ฝ”๋น„ ํ•ฉ(Jacobi sum)๊ณผ ์›๋ถ„์ˆ˜(cyclotomic number)์™€ ๊ด€๋ จ๋˜์–ด ์žˆ์Œ์„ ๋ณด์ด๊ณ  ์œ„ ์ˆ˜์—ด๋“ค์˜ ๊ฐ ์ƒํ˜ธ์ƒ๊ด€ ๋ถ„ํฌ๋“ค์„ ์œ ๋„ํ•œ๋‹ค.MM์ด pโˆ’1p-1์˜ ์•ฝ์ˆ˜์ผ ๋•Œ, shift-and-add ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ MM์ง„ ๋ฉฑ์ž‰์—ฌ๋ฅ˜ ์ˆ˜์—ด์˜ ์ƒ์ˆ˜๊ณฑ ์ˆ˜์—ด๋“ค๋กœ๋ถ€ํ„ฐ ๋„ค ๊ฐ€์ง€ ์ˆ˜์—ด๊ตฐ์„ ์„ค๊ณ„ํ•˜๋ฉฐ ๊ฐ๊ฐ ์ตœ๋Œ€ ์ƒ๊ด€์ด 2p+52\sqrt {p}+5, 3p+43\sqrt {p} +4๋กœ ์ƒ๊ณ„๋จ์„ ๋ณด์ธ๋‹ค. ๋˜ํ•œ ์„ค๊ณ„๋œ ๊ฐ ์ˆ˜์—ด์˜ ์„ ํ˜•๋ณต์žก๋„(linear complexity)๊ฐ€ pโˆ’1p-1 ํ˜น์€ pโˆ’pโˆ’1Mโˆ’1p-\frac{p-1}{M}-1๋กœ ๋‚˜ํƒ€๋‚จ์„ ๋ณด์ธ๋‹ค. ๋™์ผํ•œ ๋ฐฉ๋ฒ•์„ MM์ง„ Sidel'nikov ์ˆ˜์—ด์—๋„ ์ ์šฉํ•˜์—ฌ MM์ง„ ์ˆ˜์—ด๊ตฐ์„ ์„ค๊ณ„ํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ, ์ƒˆ๋กœ ์ œ์•ˆ๋˜๋Š” ์ˆ˜์—ด๊ตฐ F~s\tilde {\mathcal F}_{\bf s}๋Š” ์ง€๊ธˆ๊นŒ์ง€ ์•Œ๋ ค์ง„ MM์ง„ Sidel'nikov ์ˆ˜์—ด๊ตฐ๋“ค ๋ณด๋‹ค ๋งŽ์€ ์ˆ˜์—ด๋“ค์„ ํฌํ•จํ•˜๋ฉด์„œ ์ตœ๋Œ€ ์ƒ๊ด€์— ๊ด€ํ•˜์—ฌ ๋™์ผํ•œ ๊ฐ’์œผ๋กœ ์ƒ๊ณ„๋œ๋‹ค.๋งˆ์ง€๋ง‰์œผ๋กœ ์„œ๋กœ ๋‹ค๋ฅธ ํ™€์ˆ˜์ธ ์†Œ์ˆ˜ pp, qq์— ๋Œ€ํ•˜์—ฌ MM์ด pโˆ’1p-1๊ณผ qโˆ’1q-1์˜ ๊ณต์•ฝ์ˆ˜์ผ ๋•Œ, ์ฃผ๊ธฐ๊ฐ€ pqpq์ธ MM์ง„ generalized related-prime ์ˆ˜์—ด์„ ์†Œ๊ฐœํ•œ๋‹ค. ์ด ์ˆ˜์—ด์€ ์ž๊ธฐ์ƒ๊ด€์ด qโˆ’p+1q-p+1๊ณผ 55์ค‘ ํฐ ๊ฐ’์— ์˜ํ•ด ์ƒ๊ณ„๋˜๋ฉฐ ์ œ์•ˆ๋œ ์ˆ˜์—ด๊ตฐ ๋‚ด์˜ ์„œ๋กœ ๋‹ค๋ฅธ ์ˆ˜์—ด๊ฐ„ ์ƒํ˜ธ์ƒ๊ด€์€ p+qโˆ’1p+q-1๋กœ ์ƒ๊ณ„๋œ๋‹ค.ํ•œํŽธ ์ฃผํŒŒ์ˆ˜๋„์•ฝ ๋ถ€ํ˜ธ๋ถ„ํ•  ๋‹ค์ค‘์ ‘์† ๊ธฐ์ˆ ์€ ํ—ˆ๊ฐ€๋˜์ง€ ์•Š์€ ์ŠคํŽ™ํŠธ๋Ÿผ์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์œ ๋น„์ฟผํ„ฐ์Šค ๊ทผ๊ฑฐ๋ฆฌ ๋ฌด์„ ํ†ต์‹  ๋„คํŠธ์›Œํฌ๋ฅผ ์œ„ํ•œ ๊ธฐ์ˆ ๋กœ์„œ ์ตœ๊ทผ ๊ฐ๊ด‘์„ ๋ฐ›๊ณ  ์žˆ๋‹ค. WPAN (wireless personal area network)์— ๊ด€ํ•œ IEEE 802.15 WG์˜ ํ‘œ์ค€ ๊ธฐ์ˆ ์ธ ๋ธ”๋ฃจํˆฌ์Šค(Bluetooth)๊ฐ€ ๊ทธ ๋Œ€ํ‘œ์ ์ธ ์˜ˆ์ด๋ฉฐ, ์ฃผํŒŒ์ˆ˜๋„์•ฝ ๊ธฐ์ˆ ์€ ๋ ˆ์ด๋” ๊ธฐ์ˆ ์ด๋‚˜ ๋น„ํ™”๋ฅผ ๋ชฉ์ ์œผ๋กœ ํ•˜๋Š” ๊ตฐ์šฉ ํ†ต์‹  ๋“ฑ ๋งŽ์€ ๋ถ„์•ผ์— ์‘์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ฃผํŒŒ์ˆ˜๋„์•ฝ ๋Œ€์—ญํ™•์‚ฐ ํ†ต์‹ ์˜ ํ•ต์‹ฌ ๊ธฐ์ˆ ์€ ๋ฐ”๋กœ ์ตœ์ ์˜ ์ฃผํŒŒ์ˆ˜๋„์•ฝ ์ˆ˜์—ด ์„ค๊ณ„ ๊ธฐ์ˆ ์— ์žˆ๋‹ค.๋‘˜์งธ๋กœ ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๋‚ฎ์€ ํ•ด๋ฐ ์ƒ๊ด€์„ ๊ฐ–๋Š” ๋น„์ด์ง„ ์ฃผํŒŒ์ˆ˜๋„์•ฝ ์ˆ˜์—ด ์„ค๊ณ„์— ๊ด€ํ•œ ์•„๋ž˜์˜ ๋‚ด์šฉ๋“ค์„ ์†Œ๊ฐœํ•œ๋‹ค.(v,l,ฮป)(v,l, \lambda)-FHS๋Š” ์ตœ๋Œ€ ํ•ด๋ฐ ์ƒ๊ด€์ด ฮป\lambda์ด๊ณ  ํฌ๊ธฐ๊ฐ€ ll์ธ ์ฃผํŒŒ์ˆ˜ ์ง‘ํ•ฉ์ƒ์˜ ๊ธธ์ด๊ฐ€ vv์ธ ์ฃผํŒŒ์ˆ˜๋„์•ฝ ์ˆ˜์—ด์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ตœ๊ทผ Ding๊ณผ Yin์€ q=ef+1q=ef+1๋ฅผ ๋งŒ์กฑํ•˜๋Š” ์†Œ์ˆ˜๋ฉฑ(prime power) qq์— ๋Œ€ํ•ด Lempel-Greenberger ๊ฒฝ๊ณ„์— ๋Œ€ํ•ด ์ตœ์ ์ธ (qโˆ’1,e,f)(q-1,e, f)-FHS์™€ (qโˆ’1,e+1,fโˆ’1)(q-1, e+1, f-1)-FHS๋“ค์„ ๊ฐ๊ฐ ํฌํ•จํ•˜๋Š” ๋‘ ์ฃผํŒŒ์ˆ˜๋„์•ฝ ์ˆ˜์—ด ์ง‘ํ•ฉ์„ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ์ฃผํŒŒ์ˆ˜๋„์•ฝ ์ˆ˜์—ด ์ง‘ํ•ฉ์— ๊ด€ํ•œ Ding๊ณผ Yin์˜ ์ •๋ฆฌ์— ๊ด€ํ•œ ๋ฐ˜๋ก€๋ฅผ ์ œ์‹œํ•˜๊ณ  ์ด๋ฅผ ์ˆ˜์ •ํ•œ๋‹ค. ๋˜ํ•œ ์ด๋Ÿฌํ•œ ์ฃผํŒŒ์ˆ˜ ๋„์•ฝ ์ˆ˜์—ด๋“ค์ด Sidel'nikov ์ˆ˜์—ด๊ณผ ๋ฐ€์ ‘ํžˆ ๊ด€๋ จ๋˜์–ด ์žˆ์Œ์„ ๋ณด์ด๊ณ  ๊ธฐ์กด์˜ Sidel'nikov์— ์˜ํ•ด ์œ ๋„๋œ nearly equidistant code์˜ ํ•ด๋ฐ๊ฑฐ๋ฆฌ(Hamming distance)์— ๋Œ€ํ•œ ์ •๋ฆฌ๋ฅผ ์ˆ˜์ •ํ•จ์œผ๋กœ์จ ์ฃผํŒŒ์ˆ˜๋„์•ฝ ์ˆ˜์—ด์— ๊ด€ํ•œ ์ƒˆ๋กœ์šด ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๋์œผ๋กœ ์„œ๋กœ ๋‹ค๋ฅธ ํ™€์ˆ˜์ธ ์†Œ์ˆ˜ pp, qq์— ๋Œ€ํ•˜์—ฌ mm์ด pโˆ’1p-1๊ณผ qโˆ’1q-1์˜ ์ง์ˆ˜์ธ ๊ณต์•ฝ์ˆ˜์ผ ๋•Œ, Lempel-Greenberger ๊ฒฝ๊ณ„์— ๋Œ€ํ•ด ์ค€์ตœ์ ์ธ(near-optimal)์ธ (pq,m,(pqโˆ’1)/m+1)(pq, m,(pq-1)/m+1)-FHS๋ฅผ ์„ค๊ณ„ํ•œ๋‹ค.Pseudorandom sequences have widespread applications in the area of communication and digital signal processing systems including spread spectrum, stream ciphers, radar ranging, channel estimation, packet transmission synchronization, and etc. In particular, spreading sequences for multiple access are essential parts in spread spectrum communication systems.The objective of this thesis is to study sequences with low correlation over a nonbinary alphabet with respect to two different correlation measures. First, we focus on polyphase sequences with low periodic correlation over MM-ary phase-shift keying (PSK) constellation for direct-sequence code-division multiple-access (DS-CDMA) systems. Second, we study nonbinary sequences with low periodic Hamming correlation over an arbitrary alphabet for frequency-hopping code-division multiple-access (FH-CDMA) systems. Several optimal sequence families have been known for quadriphase and prime-phase cases. However, construction methods for optimal sequence sets with arbitrary alphabet size MM are less known. Recently, it was shown that the magnitude of the crosscorrelation between any distinct constant multiple sequences of an MM-ary power residue sequence of period pp is upper bounded by p+2\sqrt p +2 and that of an MM-ary Sidel'nikov sequence of period pmโˆ’1p^m-1 is upper bounded by pm+3\sqrt {p^m} +3, where pp is a prime and mm is a positive integer.In this thesis, firstly, we show that their crosscorrelation functions are closely related to Jacobi sums and cyclotomic numbers. We then derive the crosscorrelation distribution of constant multiple sequences of an MM-ary power residue sequence. In the case of constant multiple sequences of an MM-ary Sidel'nikov sequence, we get the possible crosscorrelation values whose occurrence numbers are expressed in terms of the cyclotomic numbers of order MM and are possibly zero.Secondly, we construct four MM-ary sequence families from a power residue sequence of odd prime period pp and its constant multiple sequences using the shift-and-add method, when MM is a divisor of pโˆ’1p-1. We show that the maximum correlation values of the proposed sequence families are upper bounded by 2p+52\sqrt {p} +5 or 3p+43\sqrt {p} +4. In addition, we prove that the linear complexity of each sequence in the proposed families is either pโˆ’1p-1 or pโˆ’pโˆ’1Mโˆ’1p-\frac{p-1}{M}-1. We also construct an MM-ary sequence family from {\em Sidel'nikov sequences} of period pmโˆ’1p^m-1 by applying the same method, when MM is a divisor of pmโˆ’1p^m-1. The proposed sequence family F~s\tilde {\mathcal F}_{\bf s} has larger size than the known MM-ary Sidel'nikov sequence families, whereas they all have the same upper bound on the maximum correlation.We also introduce new MM-ary sequences of length pqpq, called generalized MM-ary related-prime sequences, where pp and qq are distinct odd primes, and MM is a common divisor of pโˆ’1p-1 and qโˆ’1q-1. We show that their out-of-phase autocorrelation values are upper bounded by the maximum between qโˆ’p+1q-p+1 and 55. We also construct a family of generalized MM-ary related-prime sequences and show that the maximum correlation of the proposed sequence family is upper bounded by p+qโˆ’1p+q-1. Thirdly, we study on the construction of frequency-hopping sequences (FHSs). FH-CDMA systems have been widely used to short-range wireless networks utilizing the unlicensed spectrum, called wireless personal area network (WPAN) or military communication applications needed to be robust to jamming environment. For these systems, FHSs are required to have low Hamming correlation for minimization of interference of frequencies.A (v,l,ฮป)(v,l, \lambda)-FHS denotes a frequency-hopping sequence of length vv over a frequency set of size ll with maximum out-of-phase Hamming autocorrelation ฮป\lambda. Recently, Ding and Yin constructed two FHS families for a prime power qq satisfying q=ef+1q=ef+1 with positive integers ee and ff. Theorems 4 and 5 in their paper claim that these two FHS families include optimal (qโˆ’1,e,f)(q-1, e, f)-FHSs and (qโˆ’1,e+1,fโˆ’1)(q-1, e+1, f-1)-FHSs with respect to the Lempel-Greenberger bound, respectively. In this thesis we give counterexamples and make corrections to them. Furthermore, we observe that these FHSs are closely related to Sidel'nikov sequences. Based on our results on the spectrum of their Hamming autocorrelation values, we also correct the theorem on the spectrum of Hamming distances of nearly equidistant codes derived by Sidel'nikov and show that (qโˆ’1,e,f)(q-1, e, f)-FHSs for odd ff and qq are new FHSs with the parameters not covered in the literature.In the last part of this thesis, we construct near-optimal (pq,m,pqโˆ’1m+1)(pq, m, \frac{pq-1}{m}+1)-FHSs whose maximum Hamming autocorrelation is given by ฮปopt+1\lambda_{\text{opt}}+1 where ฮปopt\lambda_{\text{opt}} is the optimal Hamming autocorrelation value with respect to the Lempel-Greenberger bound, where pp and qq are distinct odd primes, and mm is an even common divisor of pโˆ’1p-1 and qโˆ’1q-1
    corecore