5,190 research outputs found

    Design Lines

    Full text link
    The two basic equations satisfied by the parameters of a block design define a three-dimensional affine variety D\mathcal{D} in R5\mathbb{R}^{5}. A point of D\mathcal{D} that is not in some sense trivial lies on four lines lying in D\mathcal{D}. These lines provide a degree of organization for certain general classes of designs, and the paper is devoted to exploring properties of the lines. Several examples of families of designs that seem naturally to follow the lines are presented.Comment: 16 page

    Hadamard Equiangular Tight Frames

    Get PDF
    An equiangular tight frame (ETF) is a type of optimal packing of lines in Euclidean space. They are often represented as the columns of a short, fat matrix. In certain applications we want this matrix to be flat, that is, have the property that all of its entries have modulus one. In particular, real flat ETFs are equivalent to self-complementary binary codes that achieve the Grey-Rankin bound. Some flat ETFs are (complex) Hadamard ETFs, meaning they arise by extracting rows from a (complex) Hadamard matrix. These include harmonic ETFs, which are obtained by extracting the rows of a character table that correspond to a difference set in the underlying finite abelian group. In this paper, we give some new results about flat ETFs. One of these results gives an explicit Naimark complement for all Steiner ETFs, which in turn implies that all Kirkman ETFs are possibly-complex Hadamard ETFs. This in particular produces a new infinite family of real flat ETFs. Another result establishes an equivalence between real flat ETFs and certain types of quasi-symmetric designs, resulting in a new infinite family of such designs

    Higher-order CIS codes

    Full text link
    We introduce {\bf complementary information set codes} of higher-order. A binary linear code of length tktk and dimension kk is called a complementary information set code of order tt (tt-CIS code for short) if it has tt pairwise disjoint information sets. The duals of such codes permit to reduce the cost of masking cryptographic algorithms against side-channel attacks. As in the case of codes for error correction, given the length and the dimension of a tt-CIS code, we look for the highest possible minimum distance. In this paper, this new class of codes is investigated. The existence of good long CIS codes of order 33 is derived by a counting argument. General constructions based on cyclic and quasi-cyclic codes and on the building up construction are given. A formula similar to a mass formula is given. A classification of 3-CIS codes of length ≤12\le 12 is given. Nonlinear codes better than linear codes are derived by taking binary images of Z4\Z_4-codes. A general algorithm based on Edmonds' basis packing algorithm from matroid theory is developed with the following property: given a binary linear code of rate 1/t1/t it either provides tt disjoint information sets or proves that the code is not tt-CIS. Using this algorithm, all optimal or best known [tk,k][tk, k] codes where t=3,4,…,256t=3, 4, \dots, 256 and 1≤k≤⌊256/t⌋1 \le k \le \lfloor 256/t \rfloor are shown to be tt-CIS for all such kk and tt, except for t=3t=3 with k=44k=44 and t=4t=4 with k=37k=37.Comment: 13 pages; 1 figur

    Some irreducible 2-modular codes invariant under the symplectic group S6(2)

    Get PDF
    We examine all non-trivial binary codes and designs obtained from the 2-modular primitive permutation representations of degrees up to 135 of the simple projective special symplectic group S6(2). The submodule lattice of the permutation modules, together with a comprehensive description of each code including the weight enumerator, the automorphism group, and the action of S6(2) is given. By considering the structures of the stabilizers of several codewords we attempt to gain an insight into the nature of some classes of codewords in particular those of minimum weight

    Bent Vectorial Functions, Codes and Designs

    Full text link
    Bent functions, or equivalently, Hadamard difference sets in the elementary Abelian group (\gf(2^{2m}), +), have been employed to construct symmetric and quasi-symmetric designs having the symmetric difference property. The main objective of this paper is to use bent vectorial functions for a construction of a two-parameter family of binary linear codes that do not satisfy the conditions of the Assmus-Mattson theorem, but nevertheless hold 22-designs. A new coding-theoretic characterization of bent vectorial functions is presented
    • …
    corecore