20,976 research outputs found

    Dynamic Hierarchical Cache Management for Cloud RAN and Multi- Access Edge Computing in 5G Networks

    Get PDF
    Cloud Radio Access Networks (CRAN) and Multi-Access Edge Computing (MEC) are two of the many emerging technologies that are proposed for 5G mobile networks. CRAN provides scalability, flexibility, and better resource utilization to support the dramatic increase of Internet of Things (IoT) and mobile devices. MEC aims to provide low latency, high bandwidth and real- time access to radio networks. Cloud architecture is built on top of traditional Radio Access Networks (RAN) to bring the idea of CRAN and in MEC, cloud computing services are brought near users to improve the user’s experiences. A cache is added in both CRAN and MEC architectures to speed up the mobile network services. This research focuses on cache management of CRAN and MEC because there is a necessity to manage and utilize this limited cache resource efficiently. First, a new cache management algorithm, H-EXD-AHP (Hierarchical Exponential Decay and Analytical Hierarchy Process), is proposed to improve the existing EXD-AHP algorithm. Next, this paper designs three dynamic cache management algorithms and they are implemented on the proposed algorithm: H-EXD-AHP and an existing algorithm: H-PBPS (Hierarchical Probability Based Popularity Scoring). In these proposed designs, cache sizes of the different Service Level Agreement (SLA) users are adjusted dynamically to meet the guaranteed cache hit rate set for their corresponding SLA users. The minimum guarantee of cache hit rate is for our setting. Net neutrality, prioritized treatment will be in common practice. Finally, performance evaluation results show that these designs achieve the guaranteed cache hit rate for differentiated users according to their SLA

    Adaptive TTL-Based Caching for Content Delivery

    Full text link
    Content Delivery Networks (CDNs) deliver a majority of the user-requested content on the Internet, including web pages, videos, and software downloads. A CDN server caches and serves the content requested by users. Designing caching algorithms that automatically adapt to the heterogeneity, burstiness, and non-stationary nature of real-world content requests is a major challenge and is the focus of our work. While there is much work on caching algorithms for stationary request traffic, the work on non-stationary request traffic is very limited. Consequently, most prior models are inaccurate for production CDN traffic that is non-stationary. We propose two TTL-based caching algorithms and provide provable guarantees for content request traffic that is bursty and non-stationary. The first algorithm called d-TTL dynamically adapts a TTL parameter using a stochastic approximation approach. Given a feasible target hit rate, we show that the hit rate of d-TTL converges to its target value for a general class of bursty traffic that allows Markov dependence over time and non-stationary arrivals. The second algorithm called f-TTL uses two caches, each with its own TTL. The first-level cache adaptively filters out non-stationary traffic, while the second-level cache stores frequently-accessed stationary traffic. Given feasible targets for both the hit rate and the expected cache size, f-TTL asymptotically achieves both targets. We implement d-TTL and f-TTL and evaluate both algorithms using an extensive nine-day trace consisting of 500 million requests from a production CDN server. We show that both d-TTL and f-TTL converge to their hit rate targets with an error of about 1.3%. But, f-TTL requires a significantly smaller cache size than d-TTL to achieve the same hit rate, since it effectively filters out the non-stationary traffic for rarely-accessed objects

    A Low-Complexity Approach to Distributed Cooperative Caching with Geographic Constraints

    Get PDF
    We consider caching in cellular networks in which each base station is equipped with a cache that can store a limited number of files. The popularity of the files is known and the goal is to place files in the caches such that the probability that a user at an arbitrary location in the plane will find the file that she requires in one of the covering caches is maximized. We develop distributed asynchronous algorithms for deciding which contents to store in which cache. Such cooperative algorithms require communication only between caches with overlapping coverage areas and can operate in asynchronous manner. The development of the algorithms is principally based on an observation that the problem can be viewed as a potential game. Our basic algorithm is derived from the best response dynamics. We demonstrate that the complexity of each best response step is independent of the number of files, linear in the cache capacity and linear in the maximum number of base stations that cover a certain area. Then, we show that the overall algorithm complexity for a discrete cache placement is polynomial in both network size and catalog size. In practical examples, the algorithm converges in just a few iterations. Also, in most cases of interest, the basic algorithm finds the best Nash equilibrium corresponding to the global optimum. We provide two extensions of our basic algorithm based on stochastic and deterministic simulated annealing which find the global optimum. Finally, we demonstrate the hit probability evolution on real and synthetic networks numerically and show that our distributed caching algorithm performs significantly better than storing the most popular content, probabilistic content placement policy and Multi-LRU caching policies.Comment: 24 pages, 9 figures, presented at SIGMETRICS'1
    • …
    corecore