
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 10-10-2018

Dynamic Hierarchical Cache Management for
Cloud RAN and Multi- Access Edge Computing in
5G Networks
Deepika Pathinga Rajendiran
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the OS and Networks Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Rajendiran, Deepika Pathinga, "Dynamic Hierarchical Cache Management for Cloud RAN and Multi- Access Edge Computing in 5G
Networks" (2018). Master's Projects. 653.
DOI: https://doi.org/10.31979/etd.x8b4-thxb
https://scholarworks.sjsu.edu/etd_projects/653

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/215413704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F653&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F653&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F653&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F653&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F653&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/653?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F653&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

 Dynamic Hierarchical Cache Management for Cloud RAN and Multi-

Access Edge Computing in 5G Networks

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

By

Deepika Pathinga Rajendiran

October 2018

© 2018

Deepika Pathinga Rajendiran

ALL RIGHTS RESERVED

The Designated Writing Project Committee Approves the Writing Project Titled

Dynamic Hierarchical Cache Management for Cloud RAN and Multi-

Access Edge Computing in 5G Networks

by

Deepika Pathinga Rajendiran

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

October 2018

Dr. Melody Moh Department of Computer Science

Dr. Robert Chun Department of Computer Science

Dr. Teng Moh Department of Computer Science

ABSTRACT

Cloud Radio Access Networks (CRAN) and Multi-Access Edge Computing (MEC) are

two of the many emerging technologies that are proposed for 5G mobile networks. CRAN provides

scalability, flexibility, and better resource utilization to support the dramatic increase of Internet

of Things (IoT) and mobile devices. MEC aims to provide low latency, high bandwidth and real-

time access to radio networks. Cloud architecture is built on top of traditional Radio Access

Networks (RAN) to bring the idea of CRAN and in MEC, cloud computing services are brought

near users to improve the user’s experiences. A cache is added in both CRAN and MEC

architectures to speed up the mobile network services. This research focuses on cache management

of CRAN and MEC because there is a necessity to manage and utilize this limited cache resource

efficiently. First, a new cache management algorithm, H-EXD-AHP (Hierarchical Exponential

Decay and Analytical Hierarchy Process), is proposed to improve the existing EXD-AHP

algorithm. Next, this paper designs three dynamic cache management algorithms and they are

implemented on the proposed algorithm: H-EXD-AHP and an existing algorithm: H-PBPS

(Hierarchical Probability Based Popularity Scoring). In these proposed designs, cache sizes of the

different Service Level Agreement (SLA) users are adjusted dynamically to meet the guaranteed

cache hit rate set for their corresponding SLA users. The minimum guarantee of cache hit rate is

for our setting. Net neutrality, prioritized treatment will be in common practice. Finally,

performance evaluation results show that these designs achieve the guaranteed cache hit rate for

differentiated users according to their SLA.

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my project advisor, Dr. Melody Moh, for her

excellent guidance, and encouragement throughout the course of this project.

My sincere thanks to my committee members, Dr. Robert Chun, and Dr. Teng Moh for their

useful comments, and their valuable time for reviewing my work.

Special thanks to my husband, for his endless support, and understanding, and for never giving

up on me. Special love to my son for his patience, and being flexible to my schedule, and his love

for me helped me to keep going. I would like to say my heartily thank you to my mom for her

motivation and blessings.

Last but not the least, a big thank you for my wonderful family and friends for their moral

support.

vi

TABLE OF CONTENTS

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

LIST OF ABBREVIATIONS .. ix

1. INTRODUCTION .. 1

2. BACKGROUND AND RELATED WORKS .. 2

2.1 CRAN and MEC Architectures ... 2

2.2 Related Studies .. 5

3. EXISTING CACHE MANAGEMENT ALGORITHMS .. 6

3.1 Least Frequently Used (LFU) Algorithm .. 7

3.2 EXD-AHP Algorithm .. 8

3.3 PBPS Cache Management Algorithms ... 8

4. PRELIMINARY RESULTS ... 11

4.1 Experiment Parameter ... 11

4.2 Preliminary Performance Evaluation ... 12

5. PROPOSED CACHE MANAGEMENT ALGORITHMS .. 18

5.1 New: H-EXD-AHP Algorithm ... 18

5.2 New: Dynamic Hierarchy (DH) Cache Management Algorithms .. 19

5.3 New: DH-EXD-AHP Cache Management Algorithms .. 23

5.4 New: DH-PBPS Cache Management Algorithms .. 23

6. PERFORMANCE EVALUATION OF PROPOSED CACHE MANAGEMENT

ALGORITHMS .. 24

6.1 Cache Hit Rate for H-EXD-AHP algorithm ... 24

6.2 Number of iterations for DH algorithms .. 25

7. CONCLUSION ... 27

REFERENCES ... 28

vii

LIST OF TABLES

Table 1. Simulation Parameters and values .. 11

Table 2. Different File Sizes ... 14

Table 3. Different Cache Sizes ... 15

Table 4. Different Cache Distribution .. 16

Table 5. DH-EXD-AHP: No. of Iterations (Different Minimum Guarantee) 26

Table 6. DH-EXD-AHP: No. of Iterations (Different Traffic Distribution) 26

Table 7. DH-PBPS: No. of Iterations (Different Minimum Guarantee) 27

Table 8. DH-PBPS: No. of Iterations (Different Traffic Distribution) 27

viii

LIST OF FIGURES

Figure 1. CRAN architecture ... 3

Figure 2. MEC architecture .. 4

Figure 3. Hybrid CRAN and MEC architecture ... 4

Figure 4. Cache management flowchart ... 7

Figure 5. Cache Hit Rate (CHR) (%) for different values of EXD parameter a .. 13

Figure 6. Cache Hit Rate (CHR) (%) for different file sizes 14

Figure 7. Cache Hit Rate (CHR) (%) for different cache sizes 15

Figure 8. Cache Hit Rate (CHR) (%) for different cache algorithms 16

Figure 9. Cloud Write Rate (CWR) for different cache management algorithms . 17

Figure 10. Network Traffic (Mbps) for different cache management algorithms ... 18

Figure 11. CHR (Cache Size 0.75 GB, File Size 200 KB distributed) 25

Figure 12. CHR (Cache Size 2 GB, File Size 2000 KB distributed) 25

ix

LIST OF ABBREVIATIONS

AHP – Analytical Hierarchy Process

BBU – Base Band Unit

CD – Cache Distribution

CHR – Cache Hit Rate

CRAN – Cloud Radio Access Networks

CWR – Cloud Write Rate

DH – Dynamic Hierarchical

EXD – Exponential Decay

GGDH – Good Guess Dynamic Hierarchical

IDH – Improved Dynamic Hierarchical

LFU – Least Frequently Used

MEC – Multi-access Edge Computing

MG – Minimum Guarantee

PBPS – Probability Based Popularity Scoring

RRH – Remote Radio Head

RRM – Reverse Random Marking

TD – Traffic Distribution

1

1. INTRODUCTION

For Fifth Generation (5G) mobile networks many fast-growing technologies such as Cloud

Radio Access Networks (CRAN), Multi-Access Edge Computing (MEC), Millimeter Wave,

Massive Multiple-Input Multiple-Output (MIMO) has been proposed. Among these technologies,

we are going to use CRAN and MEC for our research.

These technologies are introduced to handle the traffic data volume caused by the rapidly

growing Internet of Things (IoT) and mobile devices [7, 24]. There is a cache involved in both

CRAN and MEC technologies to increase the speed of cellular network services [7, 11, 24, 26].

The memory size of these cache resources is limited and therefore there is a necessity to manage

these cache resources efficiently. With these kinds of challenges, the network service providers

are demanded to meet the mobile user’s satisfaction. This research focuses on User Equipment

Context (UEC) cache management for CRAN and files content cache management for MEC [7,

24]. We will discuss UEC and files content in the following section. So, the idea is to increase the

Cache Hit Rate (CHR) of CRAN and MEC by managing the available resource efficiently to

improve the overall user’s experience.

This paper first proposes a new algorithm H-EXD-AHP (Hierarchical Exponential Decay

and Analytical Hierarchy Process), to improve the existing algorithm EXD-AHP [22, 24]. Then,

three dynamic cache management algorithms are designed, and they are implemented on the new

algorithm: H-EXD-AHP and an existing algorithm: H-PBPS (Probability Based Popularity

Scoring) [11, 24]. The aim of these dynamic cache algorithms is to achieve the guaranteed cache

hit rate corresponding to the user’s Service Level Agreement (SLA). The minimum guarantee of

cache hit rate is for our setting to improve SLA 3 and SLA 4 users. Net neutrality, prioritized

treatment will be in common practice. Cache sizes are partitioned for differentiated SLA users and

they are dynamically adjusted to achieve the guaranteed cache hit rate. This paper is organized as

follows: The following section discusses the background of CRAN and MEC architectures.

Section 2 also presents the related works of this research. Section 3 describes the existing cache

management algorithms. Section 4 discusses the preliminary results of the existing algorithms.

Section 5 presents the proposed dynamic cache algorithms. Section 6 gives us the performance

2

evaluation of the proposed algorithms, which is followed by the conclusion section. This work is

a continuation of our research on cloud computing [8, 16], CRAN [10, 11, 20, 22, 23, 24], edge

and fog computing [3, 5, 14], and IOT, mobile and 5G networks [14, 18, 19, 21].

2. BACKGROUND AND RELATED WORKS

2.1 CRAN and MEC Architectures

Traditional Radio Access Networks (RAN) is a distributed architecture which consists of

Long Term Evolution (LTE) Macro Base Station (MBS) (evolved Node B or eNodeB) and User

Equipment (UE) [2]. Each Remote Radio Head (RRH) of eNodeB has its own Base Band Unit

(BBU). They are connected to the core network or Evolved Packet Core (EPC) and the internet.

RRH is responsible for transmitting and receiving wireless signals. Whereas BBU helps in

converting Internet Protocol (IP) packets to signals, manages Quality of Services (QoS) and user

mobility [24]. CRAN is a centralized cloud architecture where BBUs are separated from their

RRHs, virtualized and pooled together. The architecture of CRAN is shown in Figure 1 [24, 25].

Each BBU can be represented as a Virtual Machine (VM) and each VM has its own cache memory.

The size of this cache memory involved in the BBU pool is limited, so it is important to manage

this resource efficiently [24, 25].

For each user, a UEC record information is stored in the secondary cloud memory. This

UEC information contains user’s ID, state information of the current event or session, subscription

details etc. Basically, it is like a metadata about the users. So, instead of retrieving this information

from the secondary cloud, it will be easier to access if it is stored in the BBU pool cache. Our aim

is to increase the CHR of UEC in the BBU pool. By this, we are reducing the traffic of secondary

cloud storage [24]. CRAN aims for better scalability, flexibility and better resource utilization.

3

Figure 1. CRAN architecture.

In MEC, cloud computing services are brought near the users to improve the user’s

experience [26]. These services include but not limited to content caching, task offloading, storage,

computation. For our research, we are going to focus on content file caching of MEC. Like UEC

caching from CRAN, we are trying to increase the CHR of file contents in MEC servers. A MEC

server with cache is deployed near each MBS [7]. The architecture of MEC is shown in Figure 2

[7, 26]. Of course, the cache size here also is limited, so there is a necessity to manage this resource

efficiently. These servers can share its cached items with each other using the communications

between MBS. To achieve communication between MBS, X2 interface can be used [7]. MEC aims

to reduce latency and backhaul traffic flow of the networks.

4

Figure 2. MEC architecture.

Caching on the edge (near the users) has been proven effective. Instead of retrieving data

from the internet, it will be easier and quicker if there is content readily available as near as possible

to the users [26]. CRAN and MEC technologies can be combined and form a new hybrid

architecture as shown in Figure 3 [12, 13]. CRAN uses centralized BBU pool whereas MEC

servers usually work with distributed MBS [12, 13]. In this hybrid architecture, MEC’s request

can be sent and received via MBS (RRH and BBU pool) [12]. For 5G networks, it can be either

CRAN architecture or MEC architecture or combination of both architectures.

Figure 3. Hybrid CRAN and MEC architecture.

5

2.2 Related Studies

Cache management problem is widely studied in wireless mobile networks. Following are

the some of the related works discussed.

Floratou et al proposed adaptive Selective Least Recently Used – K (SLRU-K) and

adaptive Exponential Decay (EXD) caching algorithms for Big SQL, in which they mentioned that

their parameter K and parameter a value for adaptive SLRU-K and adaptive EXD respectively has

significant impact on changing workload, so they are changed dynamically according to the

workload resulted in better performance than existing algorithms [4]. For our research, we are

using EXD for scoring the elements in the cache. If parameter a value is higher then, in the cache

more recent elements will be placed and if parameter a value is smaller then more frequent

elements will be given importance in the cache [4].

Gomes, Braun, Monteiro used the Analytical Hierarchy Process (AHP) to calculate the

weight of mobility, non-intersecting content, free storage, relative size of mobility group, and cost

of migration [6, 17]. A matrix is formed using these and importance is calculated by AHP weights

[17]. In this, they are trying to keep the popular contents in the edge cache. They show us the

design and strategies of mobile edge migrations. Using their simulation results, the authors show

that they can reduce the latency and increase the cache hit at the edge caches [6].

Tsai and Moh adopted the above two papers and came up with an algorithm called EXD-

AHP scoring algorithm in which lowest score UEC is evicted to make space for highest score UEC

[22, 24]. They have used four different levels of SLA users according to their mobility, basic and

premium services. Using their algorithm, network traffic and cloud writes were reduced which

increased their cache hit when compared to other existing algorithms [24]. We have enhanced this

scoring algorithm.

Tsai and Moh experimented with several Load Balancing (LB) algorithms to manage cache

efficiently for CRAN [23]. Among their LB algorithms, Shortest Queue (Squeue) algorithm is

considered as best performing algorithm. We are going to use the same algorithm for our LB. Their

6

results show that they can decrease the queue size and service time of cache which reduced the

network latency for 5G networks [22, 23].

Kaur and Moh proposed new algorithms for cache management in 5G [11]. In this, for

scoring the UEC records, they have used Probability Based Popularity Scoring (PBPS). One such

algorithm is Reverse Random Marking (RRM) with PBPS (RRM+PBPS) in which a certain

percentage of UECs are marked after it reaches a threshold. If we want to evict the records, we can

only evict from unmarked records [11]. If all the records are marked, then increase the threshold

and continue the same process [11]. Another algorithm is that their PBPS scoring technique is

combined with Hierarchy is called PBPS+Hierarchy in which the cache is partitioned and allocated

to users according to their service levels [11]. These algorithms which are simple in design were

compared in terms of CHR, latency, and network traffic. This PBPS+Hierarchy algorithm is also

extended for our work along with Tsai and Moh’s work [11, 22, 24].

Huang, Zhao, and Zhang used cooperative multicast caching mechanism in MEC between

base stations to utilize the resources efficiently [9]. Cooperative means if the content is not in the

small base station (SBS) instead of accessing it from MBS we can try to access from another SBS.

Multicast means instead of serving multiple requests separately and storing it in each SBS, we can

multicast the popular videos to all. Thereby saving storage space and decreasing energy

consumption. They demonstrated that by caching in the edge, network latency can be reduced, and

CHR can be increased [9].

Tran, Hajisami, and Pompili cached in a hierarchical manner [25]. Their research

experiment showed us that caching in the edge (RRH) is better than caching in the BBU pool

(cloud cache) since RRH is nearer to the users. Their performance metrics were CHR, latency, and

backhaul traffic load [25].

3. EXISTING CACHE MANAGEMENT ALGORITHMS

In this section, we are going to discuss some of the existing cache management algorithms

for 5G mobile networks. Before that, the following flowchart gives a general idea of the structure

7

of the algorithms. This flowchart shown in Figure 4 is adapted from Tsai and Moh’s work [24]

and this flowchart is also used in Kaur and Moh’s work [11]. A brief description of the flowchart

follows.

Figure 4. Cache management flowchart.

Please note that if we are using the algorithm or flowchart for BBU caching from CRAN

then the “file” is UEC records and if we are using MEC server caching then it is file content. Each

user with file or UEC request is incoming and if that file or UEC is already present in any of the

Virtual Machine (VM) cache, then it is a cache hit and keeps that file or UEC in the cache. We

must update the hit score and calculate the overall score according to the algorithm and there is no

need to write in the cloud. On the other hand, if the requested file is not present in any of the VMs

then it is a cache miss. We must write that filename in the cloud. After that, we must update the

miss score and calculate the overall score according to the algorithm. Now we are trying to add

this file to any one of the VMs so that if it is requested in future again it will be present in the

cache. To select any one of the VMs, we are using Squeue LB algorithm [22, 23]. If the selected VM

is full, evict the file with the lowest score until space is available for this file. Write the evicted file

or files to the cloud. After eviction when space is available, insert this file into VM [11, 24].

3.1 Least Frequently Used (LFU) Algorithm

LFU algorithm is used as a baseline comparison algorithm in the preliminary results

section. LFU is a classic algorithm which keeps track of the number of times files are being

8

accessed. When it’s time of eviction, the least number of accessed or least frequently used files are

evicted [15].

3.2 EXD-AHP Algorithm

Tsai and Moh proposed EXD-AHP algorithm which uses a scoring method to decide which

files need to be present in the cache and which files need to be evicted from the cache [22, 24]. To

calculate the scoring both EXD and AHP weights calculations are considered [4, 17]. For EXD,

there is a parameter a in which we can tune it to keep the recently or frequently used files in the

cache. Higher the parameter a value, the system keeps recently used files in the cache and smaller

the parameter a value it leans towards the frequency of elements [4]. AHP weights are calculated

by creating a matrix based on the SLA users [17]. If the file is accessed at time ui1+∆u for the first

time after ui1, then scoring is calculated as follows [24]:

Si(ui1+∆u) = Si(ui1)*e-a∆u+WAHP (1)

If the file didn’t get requested at a time interval [ui1, (ui1+∆u)], then the score is calculated

as follows [23]:

Si(ui1+∆u) = Si(ui1)*e-a∆u (2)

Where Si(ui1) is the score (weight), e-a∆u is EXD calculation and WAHP is AHP weight.

From equation (1) and (2), we can tell that the score of the file depends on both EXD and AHP

weight calculations [24].

3.3 PBPS Cache Management Algorithms

Kaur and Moh proposed PBPS algorithms which also use a scoring technique to determine

whether a file should be present in VM or not [11]. This scoring is calculated using the equation

(3).

ℎ𝑖𝑡 𝑠𝑐𝑜𝑟𝑒 𝐿𝑖

𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
 (1 − (

ℎ𝑖𝑡 𝑠𝑐𝑜𝑟𝑒 𝐿𝑖

𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
))

𝑚𝑖𝑠𝑠 𝑠𝑐𝑜𝑟𝑒

𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 (3)

9

As we can see from equation (3), the score is calculated based on both cache hits and cache

misses. At a given point an overall score can be calculated for a file which tells us how popular

the file is based on hits and misses. The higher the score, the higher the popularity and less chance

of eviction. This file will probably stay inside the cache because of its high PBPS score. The

requests are constantly changing so the scores are calculated dynamically. The algorithm uses a

rewarding system, in which the quantity of reward is varied according to the SLA users [11].

3.3.1 RRM with PBPS (RRM+PBPS) Algorithm

This algorithm proposed by Kaur and Moh uses PBPS scoring method and in addition to

that, it uses RRM [11]. When files are being requested and it is in the cache then it is a cache hit.

If the file score exceeds a certain threshold it is marked. Then if we must evict some files to make

room for new files, eviction process happens from unmarked files. If all the files are marked, then

the threshold value Mt is marginally increased to unmark a certain number of files [11]. Below is

the algorithm for RRM +PBPS.

RRM with PBPS (RRM+PBPS) Algorithm

1. For each filex request;

2. If filex is present in any one of the VMs; /* cache hit

3. Update PBPS hit score and calculate the overall score

 Using equation (3); (no cloudwrite)

4. Return;

5. If filex’s score exceeds Mt, then mark filex;

6. Else leave it as unmarked;

7. If all the files are marked, then increase Mt, then

 recalculate marked and unmarked files.

8. Else /*cache miss

9. Update PBPS miss score and calculate the overall score

 Using equation (3);

10. Write filex to the cloud;

11. LB: Squeue to select VM

10

12. If the selected VM has free space for filei;

13. Insert filex to selected VM;

14. Return;

15. Else if the VM is full;

16. Find filey which is an unmarked file from the cache;

17. Evict filey;

18. Write filey to the cloud;

19. Insert filex in the cache;

20. Return;

21. Update all other files in the cache using equation (3)

 With total number request parameter updated;

3.3.2 PBPS+Hierarchy (H-PBPS) Algorithm

This algorithm also uses the PBPS scoring method to calculate the addition and eviction of

files in the cache [11]. On top of this, the entire cache is divided, and each cache partition is

dedicated to the users according to their SLA. This forms a hierarchy of users. We are giving

preferential treatment to the users, so the higher preferred users will get the larger size cache

partition. The file addition or eviction happens in their allocated cache partition only [11]. The

algorithm logic is similar to the flowchart and PBPS+Hierarchy algorithm is as follows:

PBPS+Hierarchy (H-PBPS) Algorithm

1. For each filex request with SLA Li;

2. If filex is present in any one of the VMs; /* cache hit

3. Update PBPS hit score and calculate the overall score

 Using equation (3); (no cloudwrite)

4. Update content of the filex with Li in the cache;

5. Return;

6. Else; /* cache miss

7. Update PBPS miss score and calculate the overall score

 using equation (3);

8. Write filex Li to the cloud;

11

9. Select one of the VM using Squeue LB;

10. If the selected VM has free space for filex;

11. Insert filex with Li;

12. Return;

13. Else if the VM is full;

14. Find filey which has the lowest score;

15. Evict filey from Li;

16. Write filey to the cloud;

17. Insert filex Li in the cache;

18. Return;

19. Update all other files in the cache using equation (3)

 With total number request parameter updated;

4. PRELIMINARY RESULTS

4.1 Experiment Parameter

For our experiment setup, we have used the CloudSim simulator [1]. This simulator is very

popular and effective to cloud based applications. Without worrying about underlying cloud

infrastructure, we can build our cloud architecture on top of CloudSim. The parameter values for

Tsai and Moh’s research are provided by Nokia Lab researchers [24]. For our work, we mostly use

their simulation values [24]. The following Table 1 shows the experiment parameter for our

simulations [11, 24]. The simulation values used here is not fixed meaning we can change all the

parameter values and experiment the simulation results. For example, number of users and number

of user requests can be changed. Also, number of virtual machines can be generalized.

Table 1. Simulation Parameters and Values

Parameters Values

Host and VM 1 and 4

VM Cache Sizes 0.75 GB & 2 GB

Arrival rate of files into the

network

1400 files/sec

12

No of Users and requests 25000 and 420,000

File Sizes 200 KB fixed and distributed, and 2000 KB fixed and

distributed using Normal (Gaussian) Distribution

Network Bandwidth 1 Gbps

QoS Level Users SLA 1: High Mobility; Premium,

SLA 2: Low Mobility; Premium,

SLA 3: High Mobility; Basic,

SLA 4: Low Mobility; Basic

EXD parameter a and LB 10-3 and Squeue

Analytical Hierarchical Process

Weights

SLA1: 0.58; SLA2: 0.28; SLA3:

0.10; SLA4: 0.04

PBPS Hit Rewards SLA1: 1; SLA2: 0.75; SLA3: 0.5; SLA4: 0.25

4.2 Preliminary Performance Evaluation

In this preliminary performance evaluation section, we made some small changes like

changing the parameter of the existing algorithms and analyzed the results. This section results

gave us the inspiration to propose new algorithms and in the following section, those proposed

algorithms are also tested and analyzed. The performance metrics used in this section are Cache

Hit Rate (CHR), Cloud Write Rate (CWR), and Network traffic.

4.2.1 Cache Hit Rate (CHR)

CHR is an important performance evaluation metric for cache management problems. The

following results use CHR for its performance measure. For different service levels, CHR can be

calculated using the following equation (4) [24]:

CHR of Li =
Total number of Li cache hits

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑙𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 𝑓𝑟𝑜𝑚 𝐿𝑖
 (4)

Different values of EXD parameter a

The first experiment we did was to try different values for EXD parameter a. Cache size

for this experiment is 0.75 GB and file size is 200 KB distributed. Tsai and Moh’s work have 3

13

different algorithms which use this EXD parameter a [24]. They are EXD, EXD-AHP+1, EXD-

AHP. This parameter a value decides whether the recent files need to be placed in the cache or the

frequently used files need to be present in the cache. If parameter a value is high the recently

accessed files will be kept in cache and vice versa [4, 24]. The experimented different values of

parameter a using CHR performance metric is shown in Figure 5. From the result, a = 10-3 gives

better CHR. So, we used this value for our further experiment. If the system leans towards the

recency of elements, then the CHR is very less (a = 10-1 and 10-2) and if the algorithm keeps the

frequently used files in the cache then the chances of CHR is higher (a = 10-3 to 10-12). Among the

three EXD algorithms, EXD-AHP algorithms give the highest CHR. So, we chose this algorithm

for our enhancement.

Figure 5: Cache Hit Rate (CHR) (%) for different values of EXD parameter a

Different file sizes

In this, we used different file sizes for EXD-AHP and H-PBPS algorithms [11, 24]. File

size fixed means all the requested files will be of the same size, for example, 200 KB fixed means

all the file sizes requested will be of 200 KB and distributed means the requested files sizes are

varied. For distribution of different file sizes, Gaussian (Normal) distribution is used. In Table 2,

different file sizes used for the simulations are displayed. Cache size used for this experiment is

0.75 GB. Figure 6 Comparing 200 KB and 2000 KB file sizes, the small file size gives the highest

CHR and comparing fixed and distributed file sizes, fixed file size gives the highest CHR. We can

use 200 KB fixed files for UEC of CRAN since it is a metadata of users. Other distributed file

sizes can be used for MEC file content caching. Comparing EXD-AHP and H-PBPS algorithms,

EXD-AHP performs better because it has higher CHR.

14

Table 2. Different File Sizes

File Size

1. 200 KB fixed

2. 200 KB distributed

3. 2000 KB fixed

4. 2000 KB distributed

Figure 6: Cache Hit Rate (CHR) (%) for different file sizes

Different cache sizes

Next, we experimented with different cache sizes (0.75 GB and 2 GB). File size used for

this experiment is 200 KB fixed and distributed. Table 3 displays the list of different cache sizes

used for EXD-AHP and H-PBPS algorithms [11, 24]. CHR for different cache sizes is displayed

in Figure 7. Of course, cache size 2 GB gives better CHR than cache size 0.75 GB. As usual, fixed

file sizes give better CHR than distributed file sizes. In 0.75 GB cache size, EXD-AHP algorithm

gives better CHR than H-PBPS algorithm. In 2 GB cache size, H-PBPS algorithm gives 100%

cache hit for SLA 1 and 2 whereas EXD-AHP algorithm gives better CHR for all the SLAs overall.

After this experiment, we think that EXD-AHP performs better than H-PBPS so far.

15

Table 3. Different Cache Sizes

File Size Cache Size

1. 200 KB fixed 0.75 GB

2. 200 KB distributed 0.75 GB

3. 200 KB fixed 2 GB

4. 200 KB distributed 2 GB

Figure 7: Cache Hit Rate (CHR) (%) for different cache sizes

Different cache management algorithms

In this, CHR for different existing cache management algorithms is evaluated in Figure 8.

Cache size used here is 0.75 GB and file size is 200 KB distributed. LFU and RRM+PBPS are

used as baseline algorithms. For RRM+PBPS the threshold increase is 10%. For H-PBPS, the

default hierarchy partition used is 70% , 20%, 8 %, 2% for SLA 1, 2, 3, 4 users respectively [11].

We have tried different cache size partitions for SLA levels and it is mentioned in Table 4. We can

see that if the cache size partition is changed, CHR is also changed accordingly. This result gave

us the motivation to do two things. 1. We wanted to apply this hierarchy cache partition to EXD-

AHP algorithm and enhance it to perform even better. 2. We wanted to dynamically change the

cache partition according to the Minimum Guarantee of CHR set for the different SLA users.

16

Table 4. Different Cache Distribution

CD for SLA1 CD for SLA2 CD for SLA3 CD for SLA4

1. 70 % 20 % 8 % 2 %

2. 55 % 28 % 11 % 6 %

3. 47 % 25% 20 % 8 %

Figure 8: Cache Hit Rate (CHR) (%) for different cache management algorithms

4.2.2 Cloud Write Rate (CWR)

CWR is another performance metric for these cache algorithms. CWR is defined as the

number of cloud writes by the number of requests [24]:

CWR of Li =
Total number cloud writes

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑙𝑒 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠 𝑖𝑛 𝐿𝑖
 (5)

 If there is a cache hit for a request, then there is no cloud write. If there is a cache miss,

then that file must be written in the cloud and after the addition of that file, any evicted file from

cache must be written in the cloud. So, there will be 2 cloud writes [24]. Cloud Write Rate and

Cache Hit Rate are inversely proportional to each other. H-PBPS uses different cache distribution

from Table 4. Here also we can notice that CWR varies according to the different cache

distributions. Figure 9 displays the CWR for different SLA users and CWR is calculated using

17

equation (5). SLA 1 has zero cloud writes for H-PBPS (2) and SLA 4 has the highest cloud writes

for H-PBPS (1). Cache size also has a huge impact on Cloud Write Rate. If the cache size is too

small, then almost all the SLAs will have 2 cloud writes. As the cache size grows the Cloud Write

Rate will also be decreased [24].

Figure 9: Cloud Write Rate (CWR) for different cache management algorithms

4.2.3 Network traffic

Network traffic is a performance metric which is calculated based on cloud writes. Because

whenever there is a cache miss, there is a need for files to travel from cache to cloud which creates

network traffic. Assuming each file size is 200 KB on average, it is calculated as follows [24]:

Network Traffic of Li =
Number of Li cloudwrites ∗ 200 ∗ 8 ∗1000

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒
 (6)

Network traffic of Figure 10 is calculated using equation (6). This traffic result is not based

on the different SLA users. This is the overall traffic result for different cache management

algorithms. CHR and network traffic are inversely proportional and CWR and network traffic are

directly proportional because the higher the cloud writes the higher the network traffic going to

be. EXD-AHP algorithm has less network traffic overall. Different cache distribution of H-PBPS

is used from Table 4. This shows that by changing the cache distribution the traffic can also be

decreased. So, this also gave us the idea of applying the hierarchy cache partition to EXD-AHP

and try to decrease the traffic even more.

18

Figure 10: Network Traffic (Mbps) for different cache management algorithms

5. PROPOSED CACHE MANAGEMENT ALGORITHMS

The previous section results gave us the motivation to design the following proposed

algorithms. For the first part, inspired by the change in cache distribution of H-PBPS, we applied

the hierarchical part to EXD-AHP and designed a new algorithm called H-EXD-AHP algorithm.

For the second part, we designed 3 algorithms that dynamically changed the cache distribution to

meet the Minimum Guarantee of CHR for differentiated users according to their SLA. We applied

these 3 algorithms to H- EXD-AHP and H-PBPS. We will see in detail about those Dynamic

Hierarchy (DH) algorithms in this section.

5.1 New: H-EXD-AHP Algorithm

In this algorithm, EXD-AHP scoring is used from the previous section [23]. Inspired by H-

PBPS algorithm from the previous section, a hierarchical layer of cache is allocated for

differentiated SLA users according to their preferred treatment [6]. The total cache is divided

according to the type of SLA users. Of course, premium SLA users have large cache size and basic

users are allocated with small cache size. The H-EXD-AHP algorithm is as follows:

H-EXD-AHP Algorithm

1. For each filex request with SLA Li;

2. Calculate new EXD-AHP score using equation (4);

3. Update score of remaining files using equation (5);

4. If filex is present in any one of the VMs; /* cache hit

19

5. Update score of filex;

6. Return;

7. Else; /* cache miss

8. Write filex Li to the cloud;

9. Select one of the VM using Squeue LB;

10. If the selected VM has free space for filei;

11. Insert filex with Li;

12. Return;

13. Else if the VM is full;

14. Find filey which has the lowest score;

15. Evict filey from Li;

16. Write evicted file to the cloud;

17. Else if filex score is smaller than the lowest score;

18. Evict lowest scored file from the cache;

19. Write filey to the cloud;

20. Insert filex Li in the cache;

21. Return;

5.2 New: Dynamic Hierarchy (DH) Cache Management Algorithms

5.2.1 DH Algorithm

This algorithm is an enhancement for H-EXD-AHP and H-PBPS algorithms. In those

algorithms, the cache size partitioned for SLA users is fixed and cannot be changed dynamically

according to the runtime requirement. In the DH algorithm, for a given traffic distribution (TD),

the algorithm dynamically adjusts the Cache Distribution (CD) to improve CHR and tries to meet

the Minimum Guarantee (MG) of CHR [11]. The minimum guarantee of cache hit rate is for our

setting to improve SLA 3 and SLA 4 users. Net neutrality, prioritized treatment will be in common

practice.

The first step is identical to either H-EXD-AHP scoring or H-PBPS scoring. For a given

TD, and with an initial CD, CHR is measured for each SLA. Minimum Guarantee of Cache Hit

Rate is set for different SLA users. While if any one of the SLA’s CHR didn’t meet the MG (CHR

20

< MG) then, Surplus is measured for each SLA whose CHR > MG. Next, the surpluses are

arranged in increasing order. Then choose the highest surplus Li so that it can give some of its

cache sizes to deficit SLA. Choose the highest preferred SLA, whose CHR didn’t meet the MG.

Give X % (in our case 20 %) of cache size from surplus CD to deficit CD. Remove X % (20 %) of

the surplus CD and update the new cache sizes. Do this until all SLA’s MG is met. Return the

number of iterations took to achieve the MG to see how fast we can get to the final cache

distribution.

DH Algorithm

1. Use H-EXD-AHP or H-PBPS algorithm;

2. Measure CHRi of each SLA Li for i = 1,2...n;

3. While at least any one of the CHRi < MGi for Li;

4. Measure Surplusi = CHRi – MGi for each Li

 where CHRi > MGi;

5. Arrange Surplusi in increasing order;

6. Choose Li, which has the highest Surplusi;

7. Choose Lj, which has the highest SLA preference

 AND CHRj < MGj for j = 1,2...n and i≠j;

8. Set CDj = CDj + [CDi * (X/100)];

9. Set CDi = CDi – [CDi * (X/100)];

10. GoTo Step 1;

11. END While; * when CHRi >= MGi for each Li

12. Return;

5.2.2 Improved (I) DH Algorithm

This IDH algorithm is an improved version of DH algorithm, in this instead of borrowing

from only one surplus SLA, we are going to borrow from top two highest surplus SLA and give it

to deficit SLA users. From the first highest surplus we borrowed X %(in our case 20 %) of its

cache size and second highest surplus we borrowed Y % (15 %). Below is the IDH algorithm.

21

IDH Algorithm

1. Use H-EXD-AHP or H-PBPS algorithm;

2. Measure CHRi of each SLA Li for i = 1,2...n;

3. While at least any one of the CHRi < MGi for Li;

4. Measure Surplusi = CHRi – MGi for each Li

 where CHRi > MGi;

5. Arrange Surplusi in increasing order;

6. Choose Li, which has the highest Surplusi;

7. Choose Lj, which has the second highest Surplusj for

 j = 1,2...n and i≠j;

 8. Choose Lk, which has the highest SLA preference AND

 CHRk < MGk for k = 1,2,...,n, k≠i and k≠j;

9. Set CDk = CDk + [CDi * (X/100)] + [CDj * (Y/100)]

 where X > Y;

10. Set CDi = CDi – [CDi * (X/100)];

11. Set CDj = CDj – [CDj * (Y/100)];

12. GoTo Step 1;

13. END While; * when CHRi >= MGi for each Li

14. Return;

In this, we are Choosing the first and second highest surplus. Choose the highest preferred

SLA Lj, whose CHR didn’t meet the MG. Give X % (20 %) of CDi AND Y % (15 %) of CDj to

CDk where X > Y. Remove X % (20 %) of CDi from CDi. Remove Y % (15 %) of CDj from CDj

and update all cache sizes. End while all SLA’s MG is met. Return the number of iterations took

to achieve the MG to see how long it takes to execute our algorithms.

5.2.3 Good Guess (GG) DH Algorithm

In this GGDH algorithm, instead of borrowing cache sizes from surplus SLAs, we try to

meet the MG of CHR using GG formula. From previous algorithms, it is observed that for a given

22

TDi, CDi is directly proportional to CHRi for each Li, CDi α CHRi. Taking out the proportionality,

CDi = ki * CHRi.

ki = CDi / CHRi (7)

Similarly, to find Good Cache Distribution GCDi, it is directly proportional to MGi. GCDi

α MGi. Taking out the proportionality,

GCDi = ki * MGi (8)

To get the GCDi value for each Li, we must find the value of constant ki for each Li from

equation (7) and substitute that ki in equation (8). GGDH algorithm is as follows:

GGDH Algorithm

1. Use H-EXD-AHP or H-PBPS algorithm

2. Measure CHRi of each SLA Li for i = 1,2...n;

3. While at least any one of the CHRi < MGi for Li;

4. Calculate ki using equation (7);

5. Substitute ki from equation (7) and calculate GCDi using

 equation (8);

6. If GCDi of each Li sum is not equal to 100 then normalize;

7. GoTo Step 1;

8. END While; * when CHRi >= MGi for each Li

9. Return;

23

5.3 New: DH-EXD-AHP Cache Management Algorithms

5.3.1 DH-EXD-AHP Algorithm

In the DH-EXD-AHP algorithm, we are adding DH algorithm to H-EXD-AHP and CD is

dynamically changed to achieve the MG. Highest surplus gives X% of its CD to the deficit CD in

our case 20%.

DH-EXD-AHP Algorithm

1. Use H-EXD-AHP algorithm;

2. Use DH algorithm;

5.3.2 IDH-EXD-AHP Algorithm

This algorithm is like IDH algorithm. The only difference is H-EXD-AHP scoring is added

to IDH algorithm.

IDH-EXD-AHP Algorithm

1. Use H-EXD-AHP algorithm;

2. Use IDH algorithm;

5.3.3 GGDH-EXD-AHP Algorithm

 GGDH algorithm for EXD-AHP is as follows:

GGDH-EXD-AHP Algorithm

1. Use H-EXD-AHP algorithm;

2. Use GGDH algorithm;

5.4 New: DH-PBPS Cache Management Algorithms

The following DH-PBPS cache algorithms are like DH-EXD-AHP algorithms except in

these we are using PBPS scoring techniques. The algorithms are as follows:

5.4.1 DH-PBPS Algorithm

DH-PBPS Algorithm

1. Use H-PBPS algorithm;

24

2. Use DH algorithm;

5.4.2 IDH-PBPS Algorithm

IDH-PBPS Algorithm

1. Use H-PBPS algorithm;

2. Use IDH algorithm;

5.4.3 GGDH-PBPS Algorithm

GGDH-PBPS Algorithm

1. Use H-PBPS algorithm;

2. Use GGDH algorithm;

6. PERFORMANCE EVALUATION OF PROPOSED CACHE MANAGEMENT

ALGORITHMS

In this section, the performance evaluation of proposed algorithms is discussed. First, we

applied hierarchical structure to EXD-AHP algorithm and designed H-EXD-AHP. We can now

compare this new algorithm with H-PBPS and see which performs better. Next, we are going to

analyze the 3 Dynamic Hierarchy (DH) algorithms for H-EXD-AHP and H-PBPS.

6.1 Cache Hit Rate for H-EXD-AHP algorithm

CHR for H-EXD-AHP is displayed and compared with H-PBPS algorithm in Figure 11

and Figure 12. Table 4 gives the different cache partition used for the algorithms. Figure 11 uses

a small cache size and small distributed file size (that is 0.75 GB and 200 kB distributed) and

Figure 12 uses 2 GB as cache size and 2000 KB distributed file size. The problem we notice with

DH-PBPS algorithms is it gives good CHR for SLA 1 and SLA 2 but for SLA 3 and SLA 4 its

CHR is less. Whereas H-EXD-AHP algorithm performs better because CHR is higher for all the

SLA users when compared with H-PBPS algorithms.

25

Figure 11: Cache Hit Rate (CHR) (%) for H-EXD-AHP (Cache Size 0.75 GB, File Size 200

KB distributed)

Figure 12. Cache Hit Rate (CHR) (%) for H-EXD-AHP (Cache Size 2 GB, File Size 2000

KB distributed)

6.2 Number of iterations for DH algorithms

This subsection returns the number of iterations it took to achieve the Minimum Guarantee.

The minimum guarantee of cache hit rate is for our setting to improve SLA 3 and SLA 4 users.

Because in existing algorithms more importance is given to SLA 1 and SLA 2 users. Net neutrality,

prioritized treatment will be in common practice. Because we need to know how fast the algorithm

can change its cache distribution dynamically. Also, to recall, Dynamic Hierarchy borrows from

the highest surplus (X % = 20 % in our case) and gives it to deficit cache partition. Improved

Dynamic Hierarchy borrows from first two highest surpluses (X % = 20 %, Y % = 15 % where X

> Y) and gives it to deficit cache size.

26

6.2.1 DH-EXD-AHP Cache Results

Initial Cache Distribution: 25% for each SLA. For Table 5, traffic distribution is 25% for

each SLA and MG is varied. It displays the number of iterations needed to reach the MG for

different DH algorithms. For Table 6, MG is 60% for SLA1, 50% for SLA2, 35% for SLA3 and

30% for SLA4 and traffic distribution is varied. Like Table 5, this also displays the number of

iterations needed to reach MG for different dynamic cache algorithms.

Table 5. DH-EXD-AHP: No. of Iterations (Different Minimum Guarantee)

Minimum Guarantee

of Cache Hit Rate (%)

95, 50, 20, 10 80, 45, 35, 15 70, 40, 30, 20 60, 50, 35, 30

DH-EXD-AHP 8 5 4 4

IDH-EXD-AHP 6 4 4 3

GGDH-EXD-AHP 2 2 2 2

Table 6. DH-EXD-AHP: No. of Iterations (Different Traffic Distribution)

Traffic Distribution

(%)

95, 50, 20, 10 80, 45, 35, 15 70, 40, 30, 20 60, 50, 35, 30

DH-EXD-AHP 5 4 5 4

IDH-EXD-AHP 4 4 4 4

GGDH-EXD-AHP 2 2 2 2

6.2.2 DH-PBPS Cache Results

Following tables gives us the number of iterations required to meet MG for the proposed

DH algorithms. For this experiment, initial cache size distribution is considered as 25% for each

SLA. In Table 7, TD is 25% for each SLA and MG is varied. In Table 8, MG is 60% for SLA1

users, 50% for SLA2 users, 35% for SLA3 users, 30% for SLA4 users and TD is varied. Results

indicate that GGDH algorithm performs better than both DH and IDH algorithms. Comparing

27

Dynamic Hierarchy of EXD-AHP and PBPS algorithms, EXD-AHP Dynamic Hierarchy

algorithms have a smaller number of iterations.

Table 7. DH-PBPS: No. of Iterations for (Different Minimum Guarantee)

Minimum Guarantee

of Cache Hit Rate (%)

95, 50, 20, 10 80, 45, 35, 15 70, 40, 30, 20 60, 50, 35, 30

DH-PBPS 9 5 4 5

IDH-PBPS 7 4 3 3

GGDH-PBPS 2 2 2 2

Table 8. DH-PBPS: No. of Iterations for (Different Traffic Distribution)

Traffic Distribution

(%)

30, 25, 15, 30 30, 20, 15, 35 25, 15, 10, 50 30, 20, 10, 40

DH-PBPS 6 4 6 4

IDH-PBPS 4 5 5 4

GGDH-PBPS 2 2 2 2

7. CONCLUSION

This paper adopted two scoring algorithms as follows: 1. H-PBPS, 2. EXD-AHP [11, 23].

We changed the cache partition for H-PBPS algorithm [11]. Inspired by this algorithm, we

proposed H-EXD-AHP algorithm which leads to DH algorithms. In these DH algorithms, using

the hierarchy of SLA users, we dynamically changed the cache size distribution. The algorithms

can adapt to the changing MG needs. The minimum guarantee of cache hit rate is for our setting

to improve SLA 3 and SLA 4 users. Because the existing algorithms has more cache hit rates for

SLA 1 and SLA2. In reality, Net neutrality, prioritized treatment will be in common practice.

Comparably DH-EXD-AHP algorithms performed a little bit better. Among three DH algorithms,

28

GGDH algorithm gave us the smaller number of iterations. Currently, we are only changing the

cache distribution of different SLA users dynamically. Throughout the simulation, the traffic

distribution remains the same. We have changed the traffic distribution manually and run the

simulation. So, for future work, to change the traffic distribution dynamically for different SLA

users can be considered. Cache management problem in 5G is a very interesting area. For future

work, other 5G technologies such as millimeter wave, MIMO and other areas such energy

efficiency, security can also be explored.

REFERENCES

[1] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and Rajkumar

Buyya. 2011. CloudSim: a toolkit for modeling and simulation of cloud computing

environments and evaluation of resource provisioning algorithms. Software: Practice and

experience 41, 1 (2011), 23–50.

[2] Checko, Aleksandra, et al. "Cloud RAN for mobile networks—A technology overview."

IEEE Communications surveys & tutorials 17.1 (2015): 405-426.

[3] Tejaswiini Choudharik, Melody Moh, and T.-S. Moh, “Prioritized Task Scheduling in Fog

Computing,” in Proc. of the ACM Annual Southeast Conference (ACMSE), Richmond, KY,

Mar 2018.

[4] Floratou, A., et al. “Adaptive Caching in Big SQL using the HDFS Cache,” Proceedings of

the Seventh ACM Symposium on Cloud Computing (SoCC’16), New York, NY, USA, 321-

333, 2016.

[5] Gao, L., and M. Moh., Joint Computation Offloading and Prioritized Scheduling in Mobile

Edge Computing. In Proceedings of IEEE International Conference on High Performance

Computing and Simulation, Orleans, France, July 2018.

[6] Gomes, Andre, Torsten Braun, and Edmundo Monteiro. "Enhanced caching strategies at

the edge of lte mobile networks." IFIP Networking Conference (IFIP Networking) and

Workshops, 2016.

[7] T. Hou, G. Feng, S. Qin, and W. Jiang, "Proactive Content Caching by Exploiting Transfer

Learning for Mobile Edge Computing," GLOBECOM 2017 - 2017 IEEE Global

29

Communications Conference, Singapore, 2017, pp. 1-6.

doi: 10.1109/GLOCOM.2017.8254636

[8] J. Huang, K. Wu, and M. Moh. 2014. Dynamic Virtual Machine migration algorithms using

enhanced energy consumption model for green cloud datacenters. 2014 International

Conference on High Performance Computing & Simulation (HPCS). IEEE, 902–910.

[9] X. Huang, Z. Zhao, and H. Zhang, "Cooperate Caching with Multicast for Mobile Edge

Computing in 5G Networks," 2017 IEEE 85th Vehicular Technology Conference (VTC

Spring), Sydney, NSW, 2017, pp. 1-6.

[10] Karneyenka, U., Mohta, K., and Moh, M. “Location and Mobility Aware Resource

Management for 5G Cloud Radio Access Networks,” 2017 Inf. Conference on High

Performance Computing and Simulation (HPCS), Genoa, Italy, July 2017.

[11] Gurpreet Kaur, and Melody Moh. Cloud Computing Meets 5G Networks: Efficient Cache

Management in Cloud Radio Access Networks. Proceedings of The 2018 Annual ACM

Southeast Conference, Richmond, Kentucky, March 2018.

[12] T. Li, C. S. Magurawalage, K. Wang, K. Xu, K. Yang, and H. Wang, "On Efficient

Offloading Control in Cloud Radio Access Network with Mobile Edge Computing," 2017

IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta,

GA, 2017, pp. 2258-2263.

[13] D. Lin, Y. Hsu, and H. Wei, "A Novel Forwarding Policy under Cloud Radio Access

Network with Mobile Edge Computing Architecture," 2018 IEEE 2nd International

Conference on Fog and Edge Computing (ICFEC), Washington, DC, 2018, pp. 1-9.

[14] Moh, M. and R. Raju. (Invited Paper) Machine learning techniques for security of Internet

of Things (IoT) and fog computing systems. Proceedings of IEEE International Conference

on High Performance Computing and Simulation, Orleans, France, July 2018.

[15] Podlipnig, Stefan, and Laszlo Böszörmenyi. "A survey of web cache replacement

strategies." ACM Computing Surveys 35.4 (2003): 374-398.

[16] Reguri, V. R., Kogatam, S., and Moh, M. “Energy Efficient Traffic-Aware Virtual Machine

Migration in Green Cloud Data Centers,” Proceedings of the Second IEEE International

Conference on High Performance and Smart Computing, New York, April 2016.

30

[17] R. Saaty, “The analytic hierarchy process—what it is and how it is used,” Mathematical

Modelling, vol. 9, no. 3–5, pp. 161 – 176, 1987.

[18] S. Sathyanarayana, and M. Moh, Joint Route-Server Load Balancing in Software Defined

Networks using Ant Colony Optimization, Proceedings of the International Conference on

High Performance Computing and Simulation (HPCS), Innsbruck, Austria, July 2016.

[19] B. Shahriari, and M. Moh. “Intelligent Mobile Messaging for Urban Networks.”

Proceedings of the 12th IEEE Int. Conf. onWireless and Mobile Computing, Networking and

Communications (WiMob), New York, October 17-19, 2016.

[20] B. Shahriari, M. Moh, and T.-S. Moh, "Generic Online Learning for Partial Visible

Dynamic Environment with Delayed Feedback," in Proc. of the International Conference on

High Performance Computing and Simulation (HPCS), Genoa, Italy, July 2017.

[21] Gary Su, and Melody Moh. 2018. Improving Energy Efficiency and Scalability for IoT

Communications in 5G Networks. Proc. of 12th ACM Int. Conf. on Ubiquitous Information

Management and Communication (IMCOM), Langkawi, Malaysia, Jan 2018.

[22] Tsai, C., and Moh, M. “Abstract: Cache Management and Load Balancing for 5G Cloud

Radio Access Networks,” ACM Symposium on Cloud Computing, Santa Clara, USA, Sept

2017.

[23] C. Tsai, and M. Moh, "Load balancing in 5G cloud radio access networks supporting IoT

communications for smart communities," 2017 IEEE Int. Symposium on Signal Processing

and Information Technology (ISSPIT), Bilbao, 2017, pp. 259-264.

[24] Tsai, C., and Moh, M. "Cache Management for 5G Cloud Radio Access Networks,"

Proceedings of ACM International Conference on Ubiquitous Information Management and

Communication, Langkawi, Malaysia, January 2018.

[25] X. Tuyen Tran, A. Hajisami, D. Pompili, "Cooperative hierarchical caching in 5G cloud

radio access networks", IEEE Netw., vol. 31, no. 4, pp. 35-41, Jul. 2017.

[26] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, "A Survey on Mobile

Edge Networks: Convergence of Computing, Caching, and Communications," in IEEE Access,

vol. 5, pp. 6757-6779, 2017.

	San Jose State University
	SJSU ScholarWorks
	Fall 10-10-2018

	Dynamic Hierarchical Cache Management for Cloud RAN and Multi- Access Edge Computing in 5G Networks
	Deepika Pathinga Rajendiran
	Recommended Citation

	tmp.1539227300.pdf.WgjDT

