5 research outputs found

    Nonuniform Markov models

    Full text link
    A statistical language model assigns probability to strings of arbitrary length. Unfortunately, it is not possible to gather reliable statistics on strings of arbitrary length from a finite corpus. Therefore, a statistical language model must decide that each symbol in a string depends on at most a small, finite number of other symbols in the string. In this report we propose a new way to model conditional independence in Markov models. The central feature of our nonuniform Markov model is that it makes predictions of varying lengths using contexts of varying lengths. Experiments on the Wall Street Journal reveal that the nonuniform model performs slightly better than the classic interpolated Markov model. This result is somewhat remarkable because both models contain identical numbers of parameters whose values are estimated in a similar manner. The only difference between the two models is how they combine the statistics of longer and shorter strings. Keywords: nonuniform Markov model, interpolated Markov model, conditional independence, statistical language model, discrete time series.Comment: 17 page

    The Unsupervised Acquisition of a Lexicon from Continuous Speech

    Get PDF
    We present an unsupervised learning algorithm that acquires a natural-language lexicon from raw speech. The algorithm is based on the optimal encoding of symbol sequences in an MDL framework, and uses a hierarchical representation of language that overcomes many of the problems that have stymied previous grammar-induction procedures. The forward mapping from symbol sequences to the speech stream is modeled using features based on articulatory gestures. We present results on the acquisition of lexicons and language models from raw speech, text, and phonetic transcripts, and demonstrate that our algorithm compares very favorably to other reported results with respect to segmentation performance and statistical efficiency.Comment: 27 page technical repor

    Advances in unlimited-vocabulary speech recognition for morphologically rich languages

    Get PDF
    Automatic speech recognition systems are devices or computer programs that convert human speech into text or make actions based on what is said to the system. Typical applications include dictation, automatic transcription of large audio or video databases, speech-controlled user interfaces, and automated telephone services, for example. If the recognition system is not limited to a certain topic and vocabulary, covering the words in the target languages as well as possible while maintaining a high recognition accuracy becomes an issue. The conventional way to model the target language, especially in English recognition systems, is to limit the recognition to the most common words of the language. A vocabulary of 60 000 words is usually enough to cover the language adequately for arbitrary topics. On the other hand, in morphologically rich languages, such as Finnish, Estonian and Turkish, long words can be formed by inflecting and compounding, which makes it difficult to cover the language adequately by vocabulary-based approaches. This thesis deals with methods that can be used to build efficient speech recognition systems for morphologically rich languages. Before training the statistical n-gram language models on a large text corpus, the words in the corpus are automatically segmented into smaller fragments, referred to as morphs. The morphs are then used as modelling units of the n-gram models instead of whole words. This makes it possible to train the model on the whole text corpus without limiting the vocabulary and enables the model to create even unseen words by joining morphs together. Since the segmentation algorithm is unsupervised and data-driven, it can be readily used for many languages. Speech recognition experiments are made on various Finnish recognition tasks and some of the experiments are also repeated on an Estonian task. It is shown that the morph-based language models reduce recognition errors when compared to word-based models. It seems to be important, however, that the n-gram models are allowed to use long morph contexts, especially if the morphs used by the model are short. This can be achieved by using growing and pruning algorithms to train variable-length n-gram models. The thesis also presents data structures that can be used for representing the variable-length n-gram models efficiently in recognition systems. By analysing the recognition errors made by Finnish recognition systems it is found out that speaker adaptive training and discriminative training methods help to reduce errors in different situations. The errors are also analysed according to word frequencies and manually defined error classes
    corecore