322,280 research outputs found

    New Sum-Product Estimates for Real and Complex Numbers

    Get PDF
    A variation on the sum-product problem seeks to show that a set which is defined by additive and multiplicative operations will always be large. In this paper, we prove new results of this type. In particular, we show that for any finite set A of positive real numbers, it is true that |{a+bc+d:a,b,c,d∈A}|≥2|A|2-1.As a consequence of this result, it is also established that |4k-1A(k)|:=|A…A⏟ktimes+⋯+A…A⏟4k-1times|≥|A|k.Later on, it is shown that both of these bounds hold in the case when A is a finite set of complex numbers, although with smaller multiplicative constants. © 2015, Springer Science+Business Media New York

    A sum-product theorem in function fields

    Full text link
    Let AA be a finite subset of \ffield, the field of Laurent series in 1/t1/t over a finite field Fq\mathbb{F}_q. We show that for any ϵ>0\epsilon>0 there exists a constant CC dependent only on ϵ\epsilon and qq such that max{A+A,AA}CA6/5ϵ\max\{|A+A|,|AA|\}\geq C |A|^{6/5-\epsilon}. In particular such a result is obtained for the rational function field Fq(t)\mathbb{F}_q(t). Identical results are also obtained for finite subsets of the pp-adic field Qp\mathbb{Q}_p for any prime pp.Comment: Simplification of argument and note that methods also work for the p-adic
    corecore