1,463 research outputs found

    New security notions and feasibility results for authentication of quantum data

    Get PDF
    We give a new class of security definitions for authentication in the quantum setting. These definitions capture and strengthen existing definitions of security against quantum adversaries for both classical message authentication codes (MACs) and well as full quantum state authentication schemes. The main feature of our definitions is that they precisely characterize the effective behavior of any adversary when the authentication protocol accepts, including correlations with the key. Our definitions readily yield a host of desirable properties and interesting consequences; for example, our security definition for full quantum state authentication implies that the entire secret key can be re-used if the authentication protocol succeeds. Next, we present several protocols satisfying our security definitions. We show that the classical Wegman-Carter authentication scheme with 3-universal hashing is secure against superposition attacks, as well as adversaries with quantum side information. We then present conceptually simple constructions of full quantum state authentication. Finally, we prove a lifting theorem which shows that, as long as a protocol can securely authenticate the maximally entangled state, it can securely authenticate any state, even those that are entangled with the adversary. Thus, this shows that protocols satisfying a fairly weak form of authentication security automatically satisfy a stronger notion of security (in particular, the definition of Dupuis, et al (2012)).Comment: 50 pages, QCrypt 2016 - 6th International Conference on Quantum Cryptography, added a new lifting theorem that shows equivalence between a weak form of authentication security and a stronger notion that considers side informatio

    Unforgeable Quantum Encryption

    Get PDF
    We study the problem of encrypting and authenticating quantum data in the presence of adversaries making adaptive chosen plaintext and chosen ciphertext queries. Classically, security games use string copying and comparison to detect adversarial cheating in such scenarios. Quantumly, this approach would violate no-cloning. We develop new techniques to overcome this problem: we use entanglement to detect cheating, and rely on recent results for characterizing quantum encryption schemes. We give definitions for (i.) ciphertext unforgeability , (ii.) indistinguishability under adaptive chosen-ciphertext attack, and (iii.) authenticated encryption. The restriction of each definition to the classical setting is at least as strong as the corresponding classical notion: (i) implies INT-CTXT, (ii) implies IND-CCA2, and (iii) implies AE. All of our new notions also imply QIND-CPA privacy. Combining one-time authentication and classical pseudorandomness, we construct schemes for each of these new quantum security notions, and provide several separation examples. Along the way, we also give a new definition of one-time quantum authentication which, unlike all previous approaches, authenticates ciphertexts rather than plaintexts.Comment: 22+2 pages, 1 figure. v3: error in the definition of QIND-CCA2 fixed, some proofs related to QIND-CCA2 clarifie

    Block encryption of quantum messages

    Get PDF
    In modern cryptography, block encryption is a fundamental cryptographic primitive. However, it is impossible for block encryption to achieve the same security as one-time pad. Quantum mechanics has changed the modern cryptography, and lots of researches have shown that quantum cryptography can outperform the limitation of traditional cryptography. This article proposes a new constructive mode for private quantum encryption, named EHE\mathcal{EHE}, which is a very simple method to construct quantum encryption from classical primitive. Based on EHE\mathcal{EHE} mode, we construct a quantum block encryption (QBE) scheme from pseudorandom functions. If the pseudorandom functions are standard secure, our scheme is indistinguishable encryption under chosen plaintext attack. If the pseudorandom functions are permutation on the key space, our scheme can achieve perfect security. In our scheme, the key can be reused and the randomness cannot, so a 2n2n-bit key can be used in an exponential number of encryptions, where the randomness will be refreshed in each time of encryption. Thus 2n2n-bit key can perfectly encrypt O(n2n)O(n2^n) qubits, and the perfect secrecy would not be broken if the 2n2n-bit key is reused for only exponential times. Comparing with quantum one-time pad (QOTP), our scheme can be the same secure as QOTP, and the secret key can be reused (no matter whether the eavesdropping exists or not). Thus, the limitation of perfectly secure encryption (Shannon's theory) is broken in the quantum setting. Moreover, our scheme can be viewed as a positive answer to the open problem in quantum cryptography "how to unconditionally reuse or recycle the whole key of private-key quantum encryption". In order to physically implement the QBE scheme, we only need to implement two kinds of single-qubit gates (Pauli XX gate and Hadamard gate), so it is within reach of current quantum technology.Comment: 13 pages, 1 figure. Prior version appears in eprint.iacr.org(iacr/2017/1247). This version adds some analysis about multiple-message encryption, and modifies lots of contents. There are no changes about the fundamental result

    Quantum non-malleability and authentication

    Get PDF
    In encryption, non-malleability is a highly desirable property: it ensures that adversaries cannot manipulate the plaintext by acting on the ciphertext. Ambainis, Bouda and Winter gave a definition of non-malleability for the encryption of quantum data. In this work, we show that this definition is too weak, as it allows adversaries to "inject" plaintexts of their choice into the ciphertext. We give a new definition of quantum non-malleability which resolves this problem. Our definition is expressed in terms of entropic quantities, considers stronger adversaries, and does not assume secrecy. Rather, we prove that quantum non-malleability implies secrecy; this is in stark contrast to the classical setting, where the two properties are completely independent. For unitary schemes, our notion of non-malleability is equivalent to encryption with a two-design (and hence also to the definition of Ambainis et al.). Our techniques also yield new results regarding the closely-related task of quantum authentication. We show that "total authentication" (a notion recently proposed by Garg, Yuen and Zhandry) can be satisfied with two-designs, a significant improvement over the eight-design construction of Garg et al. We also show that, under a mild adaptation of the rejection procedure, both total authentication and our notion of non-malleability yield quantum authentication as defined by Dupuis, Nielsen and Salvail.Comment: 20+13 pages, one figure. v2: published version plus extra material. v3: references added and update

    Quantum Cryptography Beyond Quantum Key Distribution

    Get PDF
    Quantum cryptography is the art and science of exploiting quantum mechanical effects in order to perform cryptographic tasks. While the most well-known example of this discipline is quantum key distribution (QKD), there exist many other applications such as quantum money, randomness generation, secure two- and multi-party computation and delegated quantum computation. Quantum cryptography also studies the limitations and challenges resulting from quantum adversaries---including the impossibility of quantum bit commitment, the difficulty of quantum rewinding and the definition of quantum security models for classical primitives. In this review article, aimed primarily at cryptographers unfamiliar with the quantum world, we survey the area of theoretical quantum cryptography, with an emphasis on the constructions and limitations beyond the realm of QKD.Comment: 45 pages, over 245 reference

    Quantum-secure message authentication via blind-unforgeability

    Get PDF
    Formulating and designing unforgeable authentication of classical messages in the presence of quantum adversaries has been a challenge, as the familiar classical notions of unforgeability do not directly translate into meaningful notions in the quantum setting. A particular difficulty is how to fairly capture the notion of "predicting an unqueried value" when the adversary can query in quantum superposition. In this work, we uncover serious shortcomings in existing approaches, and propose a new definition. We then support its viability by a number of constructions and characterizations. Specifically, we demonstrate a function which is secure according to the existing definition by Boneh and Zhandry, but is clearly vulnerable to a quantum forgery attack, whereby a query supported only on inputs that start with 0 divulges the value of the function on an input that starts with 1. We then propose a new definition, which we call "blind-unforgeability" (or BU.) This notion matches "intuitive unpredictability" in all examples studied thus far. It defines a function to be predictable if there exists an adversary which can use "partially blinded" oracle access to predict values in the blinded region. Our definition (BU) coincides with standard unpredictability (EUF-CMA) in the classical-query setting. We show that quantum-secure pseudorandom functions are BU-secure MACs. In addition, we show that BU satisfies a composition property (Hash-and-MAC) using "Bernoulli-preserving" hash functions, a new notion which may be of independent interest. Finally, we show that BU is amenable to security reductions by giving a precise bound on the extent to which quantum algorithms can deviate from their usual behavior due to the blinding in the BU security experiment.Comment: 23+9 pages, v3: published version, with one theorem statement in the summary of results correcte

    Distributing Secret Keys with Quantum Continuous Variables: Principle, Security and Implementations

    Full text link
    The ability to distribute secret keys between two parties with information-theoretic security, that is, regardless of the capacities of a malevolent eavesdropper, is one of the most celebrated results in the field of quantum information processing and communication. Indeed, quantum key distribution illustrates the power of encoding information on the quantum properties of light and has far reaching implications in high-security applications. Today, quantum key distribution systems operate in real-world conditions and are commercially available. As with most quantum information protocols, quantum key distribution was first designed for qubits, the individual quanta of information. However, the use of quantum continuous variables for this task presents important advantages with respect to qubit based protocols, in particular from a practical point of view, since it allows for simple implementations that require only standard telecommunication technology. In this review article, we describe the principle of continuous-variable quantum key distribution, focusing in particular on protocols based on coherent states. We discuss the security of these protocols and report on the state-of-the-art in experimental implementations, including the issue of side-channel attacks. We conclude with promising perspectives in this research field.Comment: 21 pages, 2 figures, 1 tabl

    The Quantum Frontier

    Full text link
    The success of the abstract model of computation, in terms of bits, logical operations, programming language constructs, and the like, makes it easy to forget that computation is a physical process. Our cherished notions of computation and information are grounded in classical mechanics, but the physics underlying our world is quantum. In the early 80s researchers began to ask how computation would change if we adopted a quantum mechanical, instead of a classical mechanical, view of computation. Slowly, a new picture of computation arose, one that gave rise to a variety of faster algorithms, novel cryptographic mechanisms, and alternative methods of communication. Small quantum information processing devices have been built, and efforts are underway to build larger ones. Even apart from the existence of these devices, the quantum view on information processing has provided significant insight into the nature of computation and information, and a deeper understanding of the physics of our universe and its connections with computation. We start by describing aspects of quantum mechanics that are at the heart of a quantum view of information processing. We give our own idiosyncratic view of a number of these topics in the hopes of correcting common misconceptions and highlighting aspects that are often overlooked. A number of the phenomena described were initially viewed as oddities of quantum mechanics. It was quantum information processing, first quantum cryptography and then, more dramatically, quantum computing, that turned the tables and showed that these oddities could be put to practical effect. It is these application we describe next. We conclude with a section describing some of the many questions left for future work, especially the mysteries surrounding where the power of quantum information ultimately comes from.Comment: Invited book chapter for Computation for Humanity - Information Technology to Advance Society to be published by CRC Press. Concepts clarified and style made more uniform in version 2. Many thanks to the referees for their suggestions for improvement
    • …
    corecore