563 research outputs found

    New Results on Transceiver Design for Two-Hop Amplify-and-Forward MIMO Relay Systems With Direct Link

    Get PDF
    © 2016 IEEE. Conventional amplify-and-forward (AF) protocol for half-duplex two-hop multiple-input-multiple-output (MIMO) relay systems assumes that the source node transmits the signal only at the first time slot. While making the source node silent at the second time slot simplifies the system design, it is strictly suboptimal. To improve the system performance, in this paper, we consider that the source node transmits signals during both time slots. We develop two novel iterative algorithms to optimize the source, relay, and receiver matrices in this new AF MIMO relay system. Both algorithms are based on the minimum mean-square error (MMSE) criterion. In particular, the first algorithm is applicable for general MIMO relay systems with multiple concurrent data streams, where the source, relay, and receiver matrices are optimized in an alternating fashion until convergence. The second algorithm is developed for MIMO relay systems with a single data stream, where the source precoding vectors and the relay precoding matrix are optimized iteratively and the receiver matrix is obtained after the convergence of the source vectors and the relay matrix. Simulation results show that compared with conventional AF MIMO relay systems, the proposed system provides better bit-error-rate performance for both multiple-data-stream and single-data-stream cases

    How to Understand LMMSE Transceiver Design for MIMO Systems From Quadratic Matrix Programming

    Full text link
    In this paper, a unified linear minimum mean-square-error (LMMSE) transceiver design framework is investigated, which is suitable for a wide range of wireless systems. The unified design is based on an elegant and powerful mathematical programming technology termed as quadratic matrix programming (QMP). Based on QMP it can be observed that for different wireless systems, there are certain common characteristics which can be exploited to design LMMSE transceivers e.g., the quadratic forms. It is also discovered that evolving from a point-to-point MIMO system to various advanced wireless systems such as multi-cell coordinated systems, multi-user MIMO systems, MIMO cognitive radio systems, amplify-and-forward MIMO relaying systems and so on, the quadratic nature is always kept and the LMMSE transceiver designs can always be carried out via iteratively solving a number of QMP problems. A comprehensive framework on how to solve QMP problems is also given. The work presented in this paper is likely to be the first shoot for the transceiver design for the future ever-changing wireless systems.Comment: 31 pages, 4 figures, Accepted by IET Communication

    Robust transceiver designs for MIMO relay communication systems

    Get PDF
    The thesis investigates robust linear and non-linear transceiver design problems for wireless MIMO relay communication systems with the assumption that the partial information of the channel is available at the relay node. The joint source and relay optimization problems for MIMO relay systems are highly nonconvex, in general. We transform the problems into suitable forms which can be efficiently solved using standard convex optimization techniques. The proposed design schemes outperform the existing techniques

    Transceiver Optimization for Two-Hop AF MIMO Relay Systems With DFE Receiver and Direct Link

    Get PDF
    In this paper, we consider precoding and receiving matrices optimization for a two-hop amplify-and-forward (AF) multiple-input multiple-output (MIMO) relay system with a decision feedback equalizer (DFE) at the destination node in the presence of the direct source-destination link. By adopting the minimum mean-squared error (MMSE) criterion, we develop two new transceiver design algorithms for such a system. The first one employs an iterative procedure to design the source, relay, feed-forward, and feedback matrices. The second algorithm is a non-iterative suboptimal approach which decomposes the optimization problem into two tractable subproblems and obtains the source and relay precoding matrices by solving the two subproblems sequentially. Simulation results validate the better MSE and bit-error-rate (BER) performance of the proposed algorithms and show that the non-iterative suboptimal method has a negligible performance loss when the ratio of the source node transmission power to the relay node transmission power is small. In addition, the computational complexity analysis suggests that the second algorithm and one iteration of the first algorithm have the same order of complexity. As the first algorithm typically converges within a few iterations, both proposed algorithms exhibit a low complexity order

    Optimal Power Allocation by Imperfect Hardware Analysis in Untrusted Relaying Networks

    Get PDF
    By taking a variety of realistic hardware imperfections into consideration, we propose an optimal power allocation (OPA) strategy to maximize the instantaneous secrecy rate of a cooperative wireless network comprised of a source, a destination and an untrusted amplify-and-forward (AF) relay. We assume that either the source or the destination is equipped with a large-scale multiple antennas (LSMA) system, while the rest are equipped with a single antenna. To prevent the untrusted relay from intercepting the source message, the destination sends an intended jamming noise to the relay, which is referred to as destination-based cooperative jamming (DBCJ). Given this system model, novel closed-form expressions are presented in the high signal-to-noise ratio (SNR) regime for the ergodic secrecy rate (ESR) and the secrecy outage probability (SOP). We further improve the secrecy performance of the system by optimizing the associated hardware design. The results reveal that by beneficially distributing the tolerable hardware imperfections across the transmission and reception radio-frequency (RF) front ends of each node, the system's secrecy rate may be improved. The engineering insight is that equally sharing the total imperfections at the relay between the transmitter and the receiver provides the best secrecy performance. Numerical results illustrate that the proposed OPA together with the most appropriate hardware design significantly increases the secrecy rate.Comment: 29 pages, 7 figures, Submitted to IEEE Transactions on Wireless Communication

    Robust Design for Amplify-and-Forward MIMO Relay Systems with Direct Link and Imperfect Channel Information

    Get PDF
    In this paper, we propose statistically robust design for multiple-input multiple-output (MIMO) relay systems with the direct source-destination link and imperfect channel state information (CSI). The minimum mean-squared error (MMSE) of the signal waveform estimation at the destination node is adopted as the design criterion. We develop two iterative methods to solve the nonconvex joint source, relay, and receiver optimization problem. In particular, we derive the structure of the optimal relay precoding matrix and show the effect of CSI mismatch on the structure of the optimal robust source and relay matrices. The proposed algorithms generalize the transceiver design of MIMO relay systems with the direct link to the practical scenario of imperfect CSI knowledge. Simulation results demonstrate an improved performance of the proposed algorithms with respect to the conventional methods at various levels of CSI mismatch
    • …
    corecore