196 research outputs found

    Multiuser Successive Refinement and Multiple Description Coding

    Full text link
    We consider the multiuser successive refinement (MSR) problem, where the users are connected to a central server via links with different noiseless capacities, and each user wishes to reconstruct in a successive-refinement fashion. An achievable region is given for the two-user two-layer case and it provides the complete rate-distortion region for the Gaussian source under the MSE distortion measure. The key observation is that this problem includes the multiple description (MD) problem (with two descriptions) as a subsystem, and the techniques useful in the MD problem can be extended to this case. We show that the coding scheme based on the universality of random binning is sub-optimal, because multiple Gaussian side informations only at the decoders do incur performance loss, in contrast to the case of single side information at the decoder. We further show that unlike the single user case, when there are multiple users, the loss of performance by a multistage coding approach can be unbounded for the Gaussian source. The result suggests that in such a setting, the benefit of using successive refinement is not likely to justify the accompanying performance loss. The MSR problem is also related to the source coding problem where each decoder has its individual side information, while the encoder has the complete set of the side informations. The MSR problem further includes several variations of the MD problem, for which the specialization of the general result is investigated and the implication is discussed.Comment: 10 pages, 5 figures. To appear in IEEE Transaction on Information Theory. References updated and typos correcte

    Polar Codes for Distributed Hierarchical Source Coding

    Full text link
    We show that polar codes can be used to achieve the rate-distortion functions in the problem of hierarchical source coding also known as the successive refinement problem. We also analyze the distributed version of this problem, constructing a polar coding scheme that achieves the rate distortion functions for successive refinement with side information.Comment: 14 page

    Side-information Scalable Source Coding

    Full text link
    The problem of side-information scalable (SI-scalable) source coding is considered in this work, where the encoder constructs a progressive description, such that the receiver with high quality side information will be able to truncate the bitstream and reconstruct in the rate distortion sense, while the receiver with low quality side information will have to receive further data in order to decode. We provide inner and outer bounds for general discrete memoryless sources. The achievable region is shown to be tight for the case that either of the decoders requires a lossless reconstruction, as well as the case with degraded deterministic distortion measures. Furthermore we show that the gap between the achievable region and the outer bounds can be bounded by a constant when square error distortion measure is used. The notion of perfectly scalable coding is introduced as both the stages operate on the Wyner-Ziv bound, and necessary and sufficient conditions are given for sources satisfying a mild support condition. Using SI-scalable coding and successive refinement Wyner-Ziv coding as basic building blocks, a complete characterization is provided for the important quadratic Gaussian source with multiple jointly Gaussian side-informations, where the side information quality does not have to be monotonic along the scalable coding order. Partial result is provided for the doubly symmetric binary source with Hamming distortion when the worse side information is a constant, for which one of the outer bound is strictly tighter than the other one.Comment: 35 pages, submitted to IEEE Transaction on Information Theor

    On Multistage Successive Refinement for Wyner-Ziv Source Coding with Degraded Side Informations

    Get PDF
    We provide a complete characterization of the rate-distortion region for the multistage successive refinement of the Wyner-Ziv source coding problem with degraded side informations at the decoder. Necessary and sufficient conditions for a source to be successively refinable along a distortion vector are subsequently derived. A source-channel separation theorem is provided when the descriptions are sent over independent channels for the multistage case. Furthermore, we introduce the notion of generalized successive refinability with multiple degraded side informations. This notion captures whether progressive encoding to satisfy multiple distortion constraints for different side informations is as good as encoding without progressive requirement. Necessary and sufficient conditions for generalized successive refinability are given. It is shown that the following two sources are generalized successively refinable: (1) the Gaussian source with degraded Gaussian side informations, (2) the doubly symmetric binary source when the worse side information is a constant. Thus for both cases, the failure of being successively refinable is only due to the inherent uncertainty on which side information will occur at the decoder, but not the progressive encoding requirement.Comment: Submitted to IEEE Trans. Information Theory Apr. 200

    Source Coding in Networks with Covariance Distortion Constraints

    Get PDF
    We consider a source coding problem with a network scenario in mind, and formulate it as a remote vector Gaussian Wyner-Ziv problem under covariance matrix distortions. We define a notion of minimum for two positive-definite matrices based on which we derive an explicit formula for the rate-distortion function (RDF). We then study the special cases and applications of this result. We show that two well-studied source coding problems, i.e. remote vector Gaussian Wyner-Ziv problems with mean-squared error and mutual information constraints are in fact special cases of our results. Finally, we apply our results to a joint source coding and denoising problem. We consider a network with a centralized topology and a given weighted sum-rate constraint, where the received signals at the center are to be fused to maximize the output SNR while enforcing no linear distortion. We show that one can design the distortion matrices at the nodes in order to maximize the output SNR at the fusion center. We thereby bridge between denoising and source coding within this setup

    Slepian-Wolf Coding Over Cooperative Relay Networks

    Full text link
    This paper deals with the problem of multicasting a set of discrete memoryless correlated sources (DMCS) over a cooperative relay network. Necessary conditions with cut-set interpretation are presented. A \emph{Joint source-Wyner-Ziv encoding/sliding window decoding} scheme is proposed, in which decoding at each receiver is done with respect to an ordered partition of other nodes. For each ordered partition a set of feasibility constraints is derived. Then, utilizing the sub-modular property of the entropy function and a novel geometrical approach, the results of different ordered partitions are consolidated, which lead to sufficient conditions for our problem. The proposed scheme achieves operational separation between source coding and channel coding. It is shown that sufficient conditions are indeed necessary conditions in two special cooperative networks, namely, Aref network and finite-field deterministic network. Also, in Gaussian cooperative networks, it is shown that reliable transmission of all DMCS whose Slepian-Wolf region intersects the cut-set bound region within a constant number of bits, is feasible. In particular, all results of the paper are specialized to obtain an achievable rate region for cooperative relay networks which includes relay networks and two-way relay networks.Comment: IEEE Transactions on Information Theory, accepte

    Quantization as Histogram Segmentation: Optimal Scalar Quantizer Design in Network Systems

    Get PDF
    An algorithm for scalar quantizer design on discrete-alphabet sources is proposed. The proposed algorithm can be used to design fixed-rate and entropy-constrained conventional scalar quantizers, multiresolution scalar quantizers, multiple description scalar quantizers, and Wyner–Ziv scalar quantizers. The algorithm guarantees globally optimal solutions for conventional fixed-rate scalar quantizers and entropy-constrained scalar quantizers. For the other coding scenarios, the algorithm yields the best code among all codes that meet a given convexity constraint. In all cases, the algorithm run-time is polynomial in the size of the source alphabet. The algorithm derivation arises from a demonstration of the connection between scalar quantization, histogram segmentation, and the shortest path problem in a certain directed acyclic graph
    corecore