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Abstract

We provide a complete characterization of the rate-distortion region for the multistage successive refinement of the

Wyner-Ziv source coding problem with degraded side informations at the decoder. Necessary and sufficient conditions

for a source to be successively refinable along a distortion vector are subsequently derived. A source-channel separation

theorem is provided when the descriptions are sent over independent channels for the multistage case. Furthermore,

we introduce the notion of generalized successive refinability with multiple degraded side informations. This notion

captures whether progressive encoding to satisfy multiple distortion constraints for different side informations is as

good as encoding without progressive requirement. Necessary and sufficient conditions for generalized successive

refinability are given. It is shown that the following two sources are generalized successively refinable: (1) the

Gaussian source with degraded Gaussian side informations, (2) the doubly symmetric binary source when the worse

side information is a constant. Thus for both cases, the failure of being successively refinable is only due to the inherent

uncertainty on which side information will occur at the decoder, but not the progressive encoding requirement.

I. INTRODUCTION

The notion of successive refinement of information was introduced by Koshelev [1] and by Equitz and Cover [2],

whose interest was to determine whether the requirement of encoding a source progressively necessitates a higher

rate than encoding without the progressive requirement. A source is said to be successively refinable if encoding

in multiple stages incurs no rate loss as compared with optimal rate-distortion encoding at the separate distortion

levels. Rimoldi [3] later provided a complete characterization of the rate-distortion region for this problem.

In another seminal paper, Wyner and Ziv [4] characterized the rate-distortion function for encoding a source when

the decoder alone has access to side information correlated with the source. The notion of successive refinement

was combined with the presence of side information by Steinberg and Merhav [5], who formulated the problem

of successive refinement with degraded side informations at the decoder. The degradedness roughly means that the

decoder receiving the higher rate bit-stream also has access to the “better quality” side information. More formally,

this means the source and side-informations arranged in the descending order according to the rate of bitstream form

a Markov chain. The notion of successive refinability with degraded side informations was consequently defined,

which answers the question whether such a progressive encoding causes rate loss as compared with a single stage
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Wyner-Ziv coding. In this context, the main result in [5] was the characterization of the rate-distortion region and

the necessary and sufficient conditions for successive refinability for two-stage systems. The characterization for

more than two stages was left open. An achievable region was indeed given, however, the converse proof was not

found1.

In this work we extend these ideas in several ways. First, the question left open by Steinberg and Merhav is

resolved, which is the characterization of the rate-distortion region for the successive refinement under the Wyner-Ziv

setting, for any finite number of degraded side informations. This is accomplished by an alternative representation of

the rate region based on rate-sums. This characterization overcomes the difficulty perhaps encountered by Steinberg

and Merhav, in proving the converse for the general multistage achievable region they found. The achievable region

provided in [5] is then analyzed and shown to be equivalent to the rate-distortion region. Necessary and sufficient

conditions for a source to be successively refinable are derived.

The notion of successive refinability introduced by Steinberg and Merhav can be quite restrictive. This can be

understood in the context of work of Heegard and Berger [6], as well as Kaspi [7], who studied the problem of

source coding when a correlated side information may or may not be available at the decoder. In particular, it

was shown that when transmission was to multiple decoders with degraded side informations, the rate distortion

function could exceed the Wyner-Ziv rate needed for the decoder with the “stronger” side information, as well

as that needed for the decoder with the “weaker” side information. As such, sources can fail to be successively

refinable (with side information) simply due to this reason. This motivates our definition of generalized successive

refinability of sources when decoders have access to multiple side informations. In this notion we only require

the sum-rate of the progressive encoding to match the Heegard-Berger rate for degraded side informations, instead

of the Wyner-Ziv rate. Necessary and sufficient conditions for a source to have this property are then given. This

notion of generalized successive refinability is applied to Gaussian sources with jointly Gaussian side informations

and quadratic distortion measure. It is shown that the Gaussian source is actually successively refinable in the

generalized sense, though it fails to be successively refinable in the strict sense as defined by Steinberg and Merhav

in most cases. An explicit calculation is also given for the doubly symmetric binary source (DSBS) under Hamming

distortion measure, when the worse side information is a constant, which we show is also successively refinable

in the generalized sense. The explicit calculation of the rate-distortion region for the DSBS source in fact gives

the Heegard-Berger rate-distortion function, which was not found as of our knowledge despite several attempts [6],

[8]–[10].

The result can be generalized to the scenario when the descriptions are transmitted over N independent discrete

memoryless channel (DMC). In a more recent work [11], Steinberg and Merhav showed a source-channel separation

result holds for the two-stage case. In light of the our new result, it can be shown that such separation holds for

the multistage case as well.

1In fact, the complete rate-distortion region for multi-stage system with identical side information was given, however this only addresses a

special case in the framework.
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Fig. 1. A three-stage successive refinement system with side informations. The side informations are degraded in the sense that X ↔ Y3 ↔
Y2 ↔ Y1.

The rest of the paper is organized as follows. In Section II we define the problem and establish the notation. In

Section III, a characterization is provided for the rate-distortion region with an arbitrary finite number of stages,

therefore the question left open in [5] is resolved. Section IV begins with the necessary and sufficient conditions for a

source to be successive refinable, then the notion of generalized successive refinability is introduced and investigated.

The Gaussian example is explored in Section V, and the doubly symmetric binary source is investigated in VI.

Section VII concludes this paper with a brief discussion. Proof details are given in the appendices.

II. NOTATION AND PROBLEM STATEMENT

Let X be a finite set and let Xn be the set of all n-vectors with components in X . Denote an arbitrary member

of Xn as xn = (x1, x2, ..., xn), or alternatively as x when the dimension n is clear from the context. Upper case

is used for random variables and vectors. A discrete memoryless source (DMS) (X , PX) is an infinite sequence

{Xi}∞i=1 of independent copies of a random variable X in X with a generic distribution PX

PX(xn) =
n∏

i=1

PX(xi). (1)

Similarly, let (X ,Y1,Y2, ...,YN , PXY1Y2,...,YN
) be a discrete memoryless multisource with generic distribution

PXY1Y2,...,YN
, where N is the number of coding stages.

Let X̂ be a finite reconstruction alphabet, and let

d : X × X̂ → [0,∞) (2)

be a distortion measure. For simplicity, we will assume the decoders at all the stages use the same reconstruction

alphabet and have the same distortion measure. The generalization to different distortion measures and reconstruction

alphabets is quite simple. The per-letter distortion of a vector is defined as

d(x, x̂) =
1
n

n∑
i=1

d(xi, x̂i), ∀x ∈ Xn, x̂ ∈ X̂n. (3)

All the log function in this work is taken to be base 2.
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Fig. 2. The corresponding source channel coding problem for the source coding system depicted in Fig. 1. .

Definition 1: An (n,M1,M2, ...,MN ,D1,D2, ...,DN ) successive refinement (SR) code for source X with side

information (Y1, Y2, ..., YN ) consists of N encoding functions φm, m = 1, 2, ..., N , and N decoding functions ψm,

m = 1, 2, ..., N :

φm : Xn → IMm
(4)

ψm : IM1 × IM2 × ...× IMm
× Yn

m → X̂n, (5)

where Ik = {1, 2, ..., k}, such that

Ed(Xn, ψm(φ1(Xn), φ1(Xn), ..., φm(Xn), Y n
m)) ≤ Dm, (6)

where E is the expectation operation.

Definition 2: A rate vector R = (R1, R2, ..., RN ) is said to be D = (D1,D2, ...,DN ) achievable, if for every

ε > 0 there exists for sufficient large n an (n,M1,M2, ...,MN ,D1 + ε,D2 + ε, ...,DN + ε) code with

Rm + ε ≥ 1
n

logMm, m = 1, 2, ..., N. (7)

A three-stage example is given in Fig. 1. Denote the collection of all the D achievable rate vectors as R(D),

and this is the region to be characterized. When the side informations have arbitrary dependence among them, the

problem appears to be difficult. As in [5], we consider only the case with a particularly ordered degraded side

informations, which is given by the Markov condition X ↔ YN ↔ YN−1 ↔ ... ↔ Y1. One of our main results is

the complete characterization of this region, given in the next section.

We can further consider the case when the descriptions are transmitted over N independent discrete memoryless

channel (DMC) (see Fig 2). For simplicity, instead of using the more general model where the channels are cost-

constrained as in [11], we only consider channels without constraints; however, such an extension can be done

without much difficulty.

Definition 3: An (n, n1, n2, ..., nN ,D1,D2, ...,DN ) source-channel SR (SC-SR) code for source X with side

information (Y1, Y2, ..., YN ) for independent channels given by PYc,m|Xc,m
, m = 1, 2, ..., N , consists of N encoding
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functions φm, m = 1, 2, ..., N , and N decoding functions ψm, m = 1, 2, ..., N :

φm : Xn → Xnm
c,m (8)

ψm : Yn1
c,1 × Yn2

c,2 × ...× Ynm
c,m × Yn

m → X̂n, (9)

such that

Ed(Xn, ψm(Yc,1,Yc,2, ...,Yc,3,Ym)) ≤ Dm. (10)

Definition 4: A distortion vector D = (D1,D2, ...,DN ) is said to be SC-SR achievable for source PXY1Y2,...,YN

and channels PYc,m|Xc,m
, m = 1, 2, ..., N , under bandwidth expansion factor (ρ1, ρ2, ..., ρN ), if for every ε > 0

there exists for sufficient large n an (n, nρ1, nρ2, ..., nρN ,D1 + ε,D2 + ε, ...,DN + ε) SC-SR code. The achievable

SC-SR distortion region D(ρ1, ρ2, ..., ρN ) is the collection of all the SC-SR achievable distortion vectors under the

given bandwidth expansion factors.

III. THE CHARACTERIZATION OF THE RATE-DISTORTION REGION WITH DEGRADED SIDE INFORMATION

Define the region R∗(D) to be the set of all rate vectors R = (R1, R2, ..., RN ) for which there exists N random

variables (W1,W2, ...,WN ) in finite alphabets W1,W2, ...,WN such that the following condition are satisfied.

1) (W1,W2, ...,WN ) ↔ X ↔ YN ↔ YN−1 ↔ ...↔ Y1.

2) There exist deterministic maps fm : Wm × Ym → X̂ such that

Ed(X, fm(Wm, Ym)) ≤ Dm, 1 ≤ m ≤ N. (11)

3) The alphabet sizes satisfies

|W1| ≤ |X | + 2N − 1

|Wm| ≤ |X |
m−1∏
i=1

|Wi| + 2N − 2m+ 1, m = 2, 3, ..., N. (12)

4) The non-negative rate vectors satisfies:
m∑

i=1

Ri ≥
m∑

i=1

I(X;Wm|W1,W2, ...,Wm−1, Ym), 1 ≤ m ≤ N. (13)

where we have used the convention that W0 = ∅, i.e., the null set.

Remark 1: Because of the conditioning on W1,W2, ...,Wm−1 in the rate expressions, it is clear that the function

fm(Wm, Ym) can also be written as f ′m(W1,W2, ...,Wm, Ym) without essential difference on the definition of the

region; however the alphabet size bounds given above should be modified accordingly. This equivalence will be

used in the explicit calculation of the rate-distortion region in Section V and VI.

The following theorem establishes the rate-distortion region, which is one of the main results of the paper.

Theorem 1: For any discrete memoryless stochastically degraded source X ↔ YN ↔ YN−1 ↔ ...↔ Y1

R(D) = R∗(D). (14)
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The achievability of the region is quite straightforward. Them-th stage codebook of overall size 2n(I(X;Wm|W1,W2,...,Wm−1)+εm)

is generated uniform-randomly from Tn
[Wm|w1,w2,...,wm−1]δ , where Tn

[Wm|w1,w2,...,wm−1]δ denotes the set of

δ-typical sequences given lower-hierarchy codewords (w1,w2, ...,wm−1). These codewords are then placed into

2n(I(X;Wm|W1,W2,...,Wm−1,Ym)+2εm) bins using a uniform distribution. The decoder block-decodes Wm in the

m-th stage (using the side information), which is conditional on the lower hierarchy codewords; since the side

informations are degraded, each higher hierarchy can always decode the lower-hierarchy codewords. From the

above interpretation, it is seen that the proof of the achievability of the region essentially uses the hierarchy of

random codes as in the proof of the two stage case in [5]. Thus we will focus on the converse part of the proof of

the theorem, which is given in Appendix I.

A source-channel separation result is now stated, and the proof is given in Appendix II.

Theorem 2: For any discrete memoryless stochastically degraded source X ↔ YN ↔ YN−1 ↔ ... ↔ Y1,

and N independent discrete memoryless channels given by PYc,m|Xc,m
, m = 1, 2, ..., N , the distortion vector

D = (D1,D2, ...,Dn) is achievable under bandwidth expansion factors (ρ1, ρ2, ..., ρN ), if and only if there exist

random variables (W1,W2, ...,WN ) in finite alphabets W1,W2, ...,WN satisfying conditions 1), 2), 3) in the

definition of R∗(D) and furthermore,
m∑

i=1

ρiCi ≥
m∑

i=1

I(X;Wm|W1,W2, ...,Wm−1, Ym), 1 ≤ m ≤ N, (15)

where Ci is the channel capacity of channel i.

The rate region given in Theorem 1 is in a different form than the achievable region given in [5]. Here R∗(D)

is given in terms of the sum-rate at each stage, including rates at the previous stages, the sufficiency of which was

formally established in [12]. The achievable region in [5], denoted as R̂∗(D) here, involves (N + 1)N/2 random

variables, and is given in terms of individual rate Rm at each stage. It is provided below for ease of comparison:

R̂∗(D) is defined as the set of all rate vectors (R1, R2, ..., RN ) for which there exists a collection of (N + 1)N/2

random variables {Vi,j , 1 ≤ i ≤ N, i ≤ j ≤ N}, where Vi,j is taking values in a finite set Vi,j , such that the

following conditions are satisfied.

1) {Vi,j , 1 ≤ i ≤ N, i ≤ j ≤ N} ↔ X ↔ YN ↔ YN−1 ↔ ...↔ Y1.

2) There exist deterministic maps fm : Vm,m × Ym → X̂ such that

Ed(X, fm(Vm,m, Ym)) ≤ Dm, 1 ≤ m ≤ N. (16)

3) The rate vectors satisfies:

R1 ≥ I(X;V1,1|Y1) +
N∑

k=2

I(X;V1,k|V1,1, V1,2, ..., V1,k−1, Yk) (17)

Rm ≥ I(X;Vm,m|{Vi,j , 1 ≤ i < m, i ≤ j ≤ m}, Ym)

+
N∑

k=m+1

I(X;Vm,k|{Vi,j , 1 ≤ i ≤ m, i ≤ j ≤ k − 1}, Yk), 2 ≤ m ≤ N. (18)
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Fig. 3. An example when the achievability of the two regions are equivalent, but the two regions are not the same. One region is singleton

point labeled using the star, the other region is the shaded region including this singleton point.

It is clear that the characterization R∗(D) given in Theorem 1 is more concise. However, it can indeed be shown

that these two regions are equivalent, and we establish this equivalence as a theorem.

Theorem 3: For any discrete memoryless stochastically degraded source X ↔ YN ↔ YN−1 ↔ ...↔ Y1

R̂∗(D) = R∗(D) = R(D). (19)

The second equality obviously follows from Theorem 1. Theorem 3 is proved in Appendix III, which might

be of interest for the following reason. In [5], a proof for a similar but different claim was given for the special

case of N = 2, which showed that the achievability of R̂∗(D) and R∗(D) are equivalent. However, this does

not directly imply that the two regions are equivalent; see Fig. 3 for such an example. In our proof, the fact that

R∗(D) = R(D) is used; and since R̂∗(D) is an achievable region, we have trivially R∗(D) ⊇ R̂∗(D). However,

without invoking R∗(D) = R(D), it appears difficult to prove this inclusion. Interestingly, for N = 2, it is indeed

possible to prove Theorem 2 without invoking R∗(D) = R(D), and this alternative proof is also included in

Appendix III.

The following observation might shed some light on why a direct proof of R̂∗(D) = R(D) might be difficult,

and it also provides the necessary intuition in proving Theorem 3. Consider the case N = 3, the random variable

V1,3 is the information that the first stage encoded for the third stage. However, if the second stage still has to

encode V2,2 with a nonzero rate, then the encoder can not encode V2,2 conditioned on V1,3, since the second

stage decoder will not be able to decode V1,3. Furthermore V1,3 does not help in the second stage decoder either.

As such the encoder might as well encode V1,3 after V2,2 is encoded, which can then be conditioned on V2,2 to

reduce the rate. Thus the optimal scheme is to encode the first stage random variable V1,1; if there is additional

bit budget left in the first stage, then adjust and encode V1,2 conditioned on V1,1 until V1,2 = V2,2; and if there

is still additional bit budget left, then adjust and encode V1,3 conditioned on (V1,1, V2,2) until V1,3 = V3,3, etc.;

this process carries for each stage sequentially. Thus the majority of the N(N + 1)/2 random variables are in fact

null random variables, which reflect the change of the coding strategy at boundary points. This inherent change of
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encoding strategy appears to pose difficulty in proving the converse using R̂∗(D).

The example in Fig. 3 can also be explained by introducing the following useful property.

Property 1: A region K is said to be sum-incremental, if the following is true: if R ∈ K, then for any non-negative

rate vector R′ that satisfies
∑m

i=1R
′
i ≥

∑m
i=1Ri for all 1 ≤ m ≤ N , R′ ∈ K.

It was shown in [12] that for successive refinement coding without side information, the rate region is sum-

incremental. Using the same method, it can be shown that it is also true for the rate-distortion region R(D) of

successive refinement coding in the Wyner-Ziv setting. Intuitively, this property states that “it does not matter how

you divide up the rate between layers of the (successively refining) descriptions, as long as the sum-rate of first m

layers is sufficiently high for each m = 1, 2, ..., N” [12]: we can simply move the rate in higher stages into lower

stages to form new codes. The shaded region in Fig. 3 is sum-incremental, well the singleton point labeled by the

star is not. Thus the shaded region can be a valid rate-distortion region for the successive refinement problem, while

the singleton point is not, though the two regions imply the same achievability result. Now notice that it is quite

difficult to prove (even if not impossible) R̂∗(D) is sum-incremental, which suggests it will be difficult to prove

R̂∗(D) = R(D) directly.

IV. STRICTLY AND GENERALIZED SUCCESSIVE REFINABILITY

Extending the definition of successive refinability given in [5] to an N -stage system, means the following.

Definition 5: A sourceX is said to beN -step successively refinable along the distortion vector D = (D1,D2, ...,DN ),

with side informations (Y1, Y2, ..., YN ) if

(R∗
X|Y1

(D1), R∗
X|Y2

(D2) −R∗
X|Y1

(D1), ..., R∗
X|YN

(DN ) −R∗
X|YN−1

(DN−1)) ∈ R(D) (20)

where R∗
X|Y (·) denotes the Wyner-Ziv rate distortion function for source X with side information Y at the decoder.

This definition of successive refinability will be referred to as strictly successive refinability, for reasons that will

become clear shortly. The following theorem provides the conditions for N -stage strictly successive refinability.

Theorem 4: A discrete memoryless stochastically degraded source X ↔ YN ↔ YN−1 ↔ ... ↔ Y1 is N -step

strictly successively refinable along distortion vector (D1,D2, ...,DN ), if and only if there exist random variables

(W1,W2, ...,WN ) and deterministic functions fm : Wm × Ym → X̂ for m = 1, 2..., N such that the following

conditions hold:

1) R∗
X|Ym

(Dm) = I(X;Wm|Ym) and Ed(X, fm(Wm, Ym)) ≤ Dm, 1 ≤ m ≤ N ;

2) (W1,W2, ...,WN ) ↔ X ↔ YN ↔ YN−1 ↔ ...↔ Y1;

3) (W1,W2, ...,Wm−1) ↔ (Wm, Ym) ↔ X , 2 ≤ m ≤ N ;

4) I(Wi;Ym|W1,W2, ...,Wi−1, Yi) = 0, 1 ≤ i ≤ m− 1, 2 ≤ m ≤ N .

The conditions reduce to the corresponding conditions for the two stage cases in [5]. Note that there are in fact

a total of N(N − 1)/2 equalities specified by condition 4).

Proof of Theorem 4
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For the necessity, assume (20) holds. By Theorem 1, there exists random variables (W1,W2, ...,WN ) and maps

fm : Wm × Ym → X̂ , such that (W1,W2, ...,WN ) ↔ X ↔ YN ↔ YN−1 ↔ ... ↔ Y1, and since (20) holds, due

to (13) we have,

R∗
X|Ym

(Dm) ≥
m∑

i=1

I(X;Wi|W1,W2, ...,Wi−1, Yi), 1 ≤ m ≤ N, (21)

and Ed(X, fm(Wm, Ym)) ≤ Dm, 1 ≤ m ≤ N . From (21), it follows that

R∗
X|Ym

(Dm) ≥
m∑

i=1

I(X;Wi|W1,W2, ...,Wi−1, Yi)

(a)
= [I(X;Wm|W1,W2, ...,Wm−1, Ym) +

m−1∑
i=1

I(X;Wi|W1,W2, ...,Wi−1, Yi)]

+[
m−1∑
i=1

I(X;Wi|W1,W2, ...,Wi−1, Ym) −
m−1∑
i=1

I(X;Wi|W1,W2, ...,Wi−1, Ym)]

(b)
= I(X;W1,W2, ...,Wm|Ym) +

m−1∑
i=1

[H(Wi|W1,W2, ...,Wi−1, Yi) −H(Wi|W1,W2, ...,Wi−1, Yi,X)

−H(Wi|W1,W2, ...,Wi−1, Ym) +H(Wi|W1,W2, ...,Wi−1, Ym,X)]

(c)
= I(X;W1,W2, ...,Wm|Ym) +

m−1∑
i=1

[H(Wi|W1,W2, ...,Wi−1, Yi) −H(Wi|W1,W2, ...,Wi−1, Ym)] (22)

(d)
= I(X;W1,W2, ...,Wm|Ym) +

m−1∑
i=1

I(Wi;Ym|W1,W2, ...,Wi−1, Yi)

= I(X;Wm|Ym) + I(X;W1,W2, ...,Wm−1|Ym,Wm) +
m−1∑
i=1

I(Wi;Ym|W1,W2, ...,Wi−1, Yi)

≥ R∗
X|Ym

(Dm) +
m−1∑
i=1

I(Wi;Ym|W1,W2, ...,Wi−1, Yi) (23)

≥ R∗
X|Ym

(Dm) (24)

where (a) is by chain rule and adding and subtracting the same term, (b) follows by combining the first and third

terms, (c) is due to the Markov chain relationship (W1,W2, ...,WN ) ↔ X ↔ YN ↔ YN−1 ↔ ... ↔ Y1; (d) is

also due to the same Markov chain relationship which implies we can further condition the last term in (22) with

Yi. Next, inequality (23) is due to the fact that (Wm, Ym) is sufficient to decode to a distortion Dm while at the

same time satisfying the Markov condition Wm ↔ X ↔ Ym. Because the beginning and the end of this chain of

inequalities are equal, all the inequalities must be equalities. For (23), the following two conditions must be true

I(X;Wm|Ym) = R∗
X|Ym

(Dm), I(X;W1,W2, ...,Wm−1|Ym,Wm) = 0 (25)

which implies (W1,W2, ...,Wm−1) ↔ (Wm, Ym) ↔ X for 2 ≤ m ≤ N . For (24), it must be true that for

2 ≤ m ≤ N

I(Wi;Ym|W1,W2, ...,Wi−1, Yi) = 0, 1 ≤ i ≤ m− 1. (26)

This establishes the necessity. The sufficiency is of course trivial. The proof is completed.
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Remark 3: : Following the Remark 1 made after the definition of R∗(D), we note that if the function

fm(Wm, Ym) is indeed given instead as f ′m(W1,W2, ...,Wm, Ym), then the third condition in Theorem 4 will not ap-

pear in this set of conditions, and the first condition should be modified as: R∗
X|Ym

(Dm) = I(X;W1,W2, ...,Wm|Ym)

and Ed(X, f ′m(W1,W2, ...,Wm, Ym)) ≤ Dm, 1 ≤ m ≤ N .

In order to introduce the notion of generalized successive refinability, we note that the problem considered in

[6],[7] can be understood in the framework being treated as the projection of rate vector R(D) on the sum-rate
∑N

i=1Ri and ignoring the individual rate; i.e., it is a relaxed version of the current problem. Let us denote the

sum-rate-distortion function to satisfy distortion constraint vector (D1,D2, ...,Dm) with degraded side information

(Y1, Y2, ..., Ym) as RHB(D1,D2, ...,Dm), which was given in [6]. Since RHB(D1,D2, ...,Dm) degenerates to

R∗
X|Ym

(Dm) when all the other distortion constraints (D1,D2, ...,Dm−1) are set to be infinite, it is seen that

RHB(D1,D2, ...,Dm) ≥ R∗
X|Ym

(Dm). Because RHB(D1,D2, ...,Dm) is a lower bound for the sum-rate of
∑m

i=1Ri, if RHB(D1,D2, ...,Dm) > R∗
X|Ym

(Dm) for any m ∈ IN , then the source is trivially not strictly

successively refinable.

From the above discussion, it is seen that for a source to be strictly successively refinable, two conditions are neces-

sary. The first is that RHB(D1,D2, ...,Dm) = R∗
X|Ym

(Dm); and the second is that in achieving (D1,D2, ...,Dm)

for side information (Y1, Y2, ..., Ym), the encoding can be performed progressively without rate loss. The first

condition in fact provides a simple necessary condition to check whether a source is successive refinable without

directly testing the conditions in Theorem 4, which can be quite difficult because of the involvement of random

variables Wi.

Theorem 5: A necessary condition for a discrete memoryless stochastically degraded source X ↔ YN ↔
YN−1 ↔ ... ↔ Y1 to be N -step strictly successively refinable along distortion vector (D1,D2, ...,DN ), is that

RHB(D1,D2, ...,Dm) = R∗
X|Ym

(Dm) for each 1 ≤ m ≤ N .

This condition is in fact extremely strict, and it is not satisfied for the following two familiar sources in the two

stage case.

• The Gaussian source when the two side informations are not statistically identical. This example is treated in

more detail in the next section.

• Doubly-symmetric binary source (DSBS) with Hamming distortion measure, when the first stage does not have

side information. An explicit calculation is given in Section VI.

A natural question arises as whether the aforementioned second condition can be satisfied separately, and for this

purpose the notion of generalized successively refinable with side information is defined. This notion can be used

to delineate these two conditions which result in the failure of a source being successively refinable.

Definition 6: A source X is said to be N -step generalized successively refinable with degraded side informations,

i.e., X ↔ YN ↔ YN−1 ↔ ...↔ Y1, along the distortion vector D = (D1,D2, ...,DN ), if

(RHB(D1), RHB(D1,D2) −RHB(D1), ..., RHB(D1,D2, ...,DN ) −RHB(D1,D2, ...,DN−1))

∈ R(D).
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The definition is limited to the degraded side information case, because RHB(D1,D2, ...,DN ) is known under

this condition. The notion of generalized successive refinability only considers whether in order to achieve distortion

(D1,D2, ...,DN ) with side informations (Y1, Y2, ..., YN ), a progressive encoder is as good as an arbitrary encoder,

but ignores whether R∗
X|Ym

(Dm) = RHB(D1,D2, ...,Dm) is true.

The following theorem makes explicit the connection between strictly successive refinability and the generalized

version.

Theorem 6: A source X is N -step strictly successively refinable with degraded side information along the distor-

tion vector D = (D1,D2, ...,DN ), if and only if it isN -step generalized successively refinable, and RHB(D1,D2, ...,Dm) =

R∗
X|Ym

(Dm) for each 1 ≤ m ≤ N .

Proof of Theorem 6

The sufficiency is trivial, and we only prove the necessity. By definition, we have

r∗ = (R∗
X|Y1

(D1), R∗
X|Y2

(D2) −R∗
X|Y1

(D1), ..., R∗
X|YN

(DN ) −R∗
X|YN−1

(DN−1)) ∈ R(D). (27)

Since r∗ is achievable, it must satisfy the following lower bound:
m∑

i=1

r∗i ≥ RHB(D1,D2, ...,Dm), 1 ≤ m ≤ N. (28)

Define the rate vector

r = (RHB(D1), RHB(D1,D2) −RHB(D1), ..., RHB(D1,D2, ...,DN ) −RHB(D1,D2, ...,DN−1)) (29)

then it follows
m∑

i=1

ri = RHB(D1,D2, ...,Dm) ≥ R∗
X|Ym

(Dm) =
m∑

i=1

r∗i ≥ RHB(D1,D2, ...,Dm), 1 ≤ m ≤ N. (30)

Thus the inequalities must be equality which gives RHB(D1,D2, ...,Dm) = R∗
X|Ym

(Dm) for 1 ≤ m ≤ N . The

sum-incremental property of the rate-distortion region R(D) further implies that r ∈ R(D), which completes the

proof.

The next theorem is also straightforward as a consequence of Theorem 1 and the definition of generalized

successive refinability, thus the proof is omitted.

Theorem 7: A discrete memoryless stochastically degraded source X ↔ YN ↔ YN−1 ↔ ... ↔ Y1 is N -

step generalized successively refinable if and only if there exist random variables (W1,W2, ...,WN ) satisfying the

conditions given for R∗(D1,D2, ...,DN ) with

RHB(D1,D2, ...,Dm) =
m∑

i=1

I(X;Wi|W1,W2, ...,Wi−1, Yi), 1 ≤ m ≤ N. (31)

Different from strictly successive refinability with degraded side information in [5] or the conventional successive

refinability without side information [2], there is no Markov condition involved. Though somewhat surprising at the

first sight, it is actually straightforward, because for degraded side informations, the optimal coding scheme naturally

employs a progressive order. However, an arbitrary source is not necessarily generalized successively refinable along

a distortion vector (pair), because a random variable W ∗
1 optimal for the first stage, is not necessarily optimal together

DRAFT



12

with any W2 for the first two stages. An example is that any source that is not successively refinable without side

information, is not generalized successively refinable if we take both the side information Y1 and Y2 as constant.

With the definitions above, we will show in the next section that though Gaussian source with different but

degraded side informations is not strictly successively refinable, it is indeed generalized successively refinable. The

reason for it to be not strictly successively refinable is thus only due to the fact RHB(D1,D2, ...,Dj) > R∗
X|Yj

in these cases. Furthermore, we will show that the same is true for the DSBS source. Unlike the conventional

successive refinability without side information, when side information is involved, many familiar sources are very

likely to be not strictly successively refinable unless the side information is identical at all the stages; however,

they are quite likely to be generalized successively refinable.

V. GAUSSIAN SOURCE WITH DIFFERENT SIDE INFORMATIONS

We explore the Gaussian source with mean squared error distortion measure in this section. The calculation will

be focused on the two-stage system, which is sufficient for the purpose of illustrating the two kinds of successive

refinability; however, it can be generalized to any finite stages. We emphasize that this derivation is not a trivial

extension of the one in [6] when Y1 is a constant, and thus more details are included in Appendix IV. Though

all the discussions in the previous sections are for discrete sources, the result can be generalized to the Gaussian

source using the techniques in [13][14].

We first recall the result in [6] for the two stage case,

RHB(D1,D2) = min
p(D1,D2)

[I(X;W1|Y1) + I(X;W2|W1, Y2)], (32)

where p(D1,D2) is the set of all random variable (W1,W2) ∈ W1×W2 jointly distributed with the generic random

variables (X,Y1, Y2), such that the following conditions are satisfied: (1) (W1,W2) ↔ X ↔ Y2 ↔ Y1 is a Markov

string; (2) there exist deterministic functions f1 and f2 such that

Ed(X, f(W1, Y1)) ≤ D1, Ed(X, f(W1,W2, Y2)) ≤ D2.

The source in question is X ∼ N (0, σ2
x), i.e., a zero mean normal random variable with variance σ2

x. Let

Y1 = X +N1 +N2 and Y2 = X +N2, where N1 ∼ N (0, σ2
1), N2 ∼ N (0, σ2

2), and X , N1 and N2 are mutually

independent and Gaussian; further assume that σ2
1 , σ

2
2 > 0. To facilitate the discussions, we partition the distortion

regions into the following subregions2, as illustrated in Fig. 4, where D∗
1 , D∗

2 and γ are defined as

D∗
1

∆=
σ2

x(σ2
1 + σ2

2)
σ2

x + σ2
1 + σ2

2

, D∗
2

∆=
σ2

xσ
2
2

σ2
x + σ2

2

, γ
∆=

σ2
2

σ2
1 + σ2

2

,

where it is clear that D∗
1 and D∗

2 are the variance of the best MMSE linear estimator of X given Y1 and Y2,

respectively.

The regions can be understood as follows

2To make the definition of the regions to be consistent with those in [8], we label the horizontal axis as D2. This convention is also used in

the next section.
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Fig. 4. Partition of distortion region for the quadratic Gaussian source.

• Region I: 0 < D1 ≤ D∗
1 , 0 < D2 ≤ D∗

2 and D1 ≥ γσ2
1D2

γσ2
1−(1−γ)2D2

. In this region both constraints are effective.

• Region II: D1 > D∗
1 , 0 < D2 < D∗

2 . In this region, the first stage does not have to encode, and the problem

degenerates to Wyner-Ziv coding only for the second stage, i.e., R1 ≥ 0 and R1 +R2 ≥ R∗
X|Y2

(D2).

• Region III: D1 ≤ D∗
1 and 0 < D1 <

γσ2
1D2

γσ2
1−(1−γ)2D2

. In this region, the second stage does not have to encode,

and the problem degenerates to Wyner-Ziv coding only for the first stage, i.e., R1 ≥ R∗
X|Y1

(D1) and R2 ≥ 0.

• Region IV: D1 > D∗
1 and D2 > D∗

2 . This can be achieved with zero rate, since the side-informations are

enough to satisfy the distortion constraints.

Region I is the only non-degenerate case among the four. In fact, for any distortion pairs (D1,D2) in Region II,

III or IV, there is a distortion pair (D′
1,D

′
2) on the boundary of Region I that strictly improves over (D1,D2), and

is achievable using the same rates; i.e., R(D1,D2) = R(D′
1,D

′
2), and D1 ≥ D′

1, D2 ≥ D′
2, where at least one of

inequalities holds strictly. Since Region I is the only non-degenerate case, it will be our focus. For the first stage,

an obvious lower bound is the Wyner-Ziv rate distortion function, which gives

R1 ≥ 1
2

log
σ2

x(σ2
1 + σ2

2)
D1(σ2

x + σ2
1 + σ2

2)
. (33)

Using RHB(D1,D2) as the lower bound on the sum rate, we have

R1 +R2 ≥ RHB(D1,D2) =
1
2

log
σ2

xσ
2
1σ

2
2

D2(σ2
x + σ2

1 + σ2
2)((1 − γ)2D1 + γσ2

1)
(34)

for which the rate distortion function RHB(D1,D2) is proved in Appendix IV.

Not surprisingly, the following pair of random variables actually achieve the lower bounds on R1 and R1 +R2

simultaneously in Region I:

W1 = X + Z1 + Z2, W2 = X + Z2

where Z1, Z2 are mutually independent zero-mean Gaussian random variable, and independent of (X,N1, N2),

with proper choice of variances determined by D1,D2, σ
2
1 , σ

2
2 , σ

2
x. Alternatively, it is obvious that this choice of

W1 and W2 makes all the inequalities in the lower bounding derivation satisfied with equality, thus achieves the

lower bound.
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From the above discussion, it is clear that this choice of W1 and W2 satisfies the condition of Theorem 7, and thus

Gaussian source is indeed generalized successively refinable. However, in the interior of Region I, RHB(D1,D2)

is strictly larger than R∗
X|Y2

(D2), which implies Gaussian source is not successively refinable in the strict sense for

these distortion pairs by Theorem 6. On the boundary between Region I and II, as well in Region II, RHB(D1,D2) =

R∗
X|Y2

(D2), thus it is indeed successively refinable in the strict sense for these distortion pairs; however, this

degenerate case is less interesting.

VI. THE DOUBLY-SYMMETRIC BINARY SOURCE

In this section we consider the following special case: X is a DMS with alphabet in {0, 1}, and P (X = 0) =

P (X = 1) = 0.5. Side information Y2 = Y = X ⊕ N , where N is a Bernoulli random variable independent of

everything else with P (N = 1) = p < 0.5 and ⊕ stands for modulo 2 addition; alternatively, Y can be taken as

the output of a binary symmetric channel with input X , and crossover probability p. Y1 is a constant, i.e., there is

no side information at the first stage. The distortion measure is the Hamming distortion d(x, x̂) = x⊕ x̂, where ⊕
is modulo 2 summation.

As in the Gaussian case, the function RHB(D1,D2) plays a significant role for this source. We digress here to

give a brief review of this particular problem. The DSBS source, which is probably the simplest discrete source in

the side information scenario, provided considerable insight into the Wyner-Ziv problem [4]. Somewhat surprisingly,

an explicit calculation of RHB(D1,D2) was not found for this source. Heegard and Berger postulated a forward

test channel in [6], which was later shown to be not optimal by Kerpez [8]. Kerpez provided upper and lower

bounds, neither of which are tight. Fleming and Effros [9] also contributed to this problem by considering it as a

rate distortion problem with mixed types of side information. An algorithm to compute the rate-distortion function

numerically was further devised in [10]. However an explicit expression of the rate distortion function for this

source, and more importantly the corresponding optimal forward test channel structure have not been given in

the literature. In the process of considering our problem for the DSBS case, we give an explicit solution to the

Heegard-Berger problem as well.

In this section we first explicitly calculate RHB(D1,D2), and then apply the result to the successive refinement

coding case, where it will be shown that the DSBS is indeed generalized successively refinable.

A. RHB(D1,D2) for the DSBS source

As in the Gaussian case considered in Section V, it was shown in [8]3 that the rate distortion region can be

partitioned into four subregions, three of which are degenerate (see Fig. 5).

• Region I: 0 ≤ D1 < 0.5 and 0 ≤ D2 < min(D1, p). In this region R(D1,D2) is a function of both D1 and

D2, and it is the only non-degenerate case;

3Note that the constraints D1 and D2, which are the first and second stage distortions here, correspond to D2 and D1 defined in [8]

respectively.
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Fig. 5. The four parts of the rate-distortion regions. dc is the critical distortion defined in [4]

• Region II: D1 ≥ 0.5 and 0 ≤ D2 ≤ p. Here the first stage does not have to encode and therefore the problem

degenerates to Wyner-Ziv encoding for the second stage.

• Region III: 0 ≤ D1 ≤ 0.5 and D2 ≥ min(D1, p). Here the second stage does not have to encode and hence

the problem degenerates to the rate-distortion encoding for the first stage.

• Region IV: D1 > 0.5 and D2 > p. Clearly the rate is zero since the distortion constraints are trivially met.

We will need the following function from [4], defined on the domain 0 ≤ u ≤ 1,

G(u) = h(p ∗ u) − h(u),

where h(u) is the binary entropy function h(u) = −u log u− (1−u) log(1−u) and u ∗ v is the binary convolution

for 0 ≤ u, v ≤ 1 and u ∗ v = u(1 − v) + v(1 − u). We will be interested only in the case 0 ≤ p < 0.5. It was

shown in [4] that G(u) is (strictly) convex; furthermore, it is easy to show that G(u) is symmetric about 0.5, and

is monotonically decreasing for 0 ≤ u ≤ 0.5; the minimum of G(u) is zero when u = 0.5. It was also shown4 in

[4] that for 0 ≤ D < p

R∗
X|Y (D) = min

(β,θ):0≤θ≤1,0≤β≤p,D=θβ+(1−θ)p
[θG(β)]. (35)

We next define the following function

SD1(α, β, θ, θ1) = 1 − h(D1 ∗ p) + (θ − θ1)G(α) + θ1G(β) + (1 − θ)G(γ)

where

γ =

⎧⎨
⎩

D1−(θ−θ1)(1−α)−θ1β
1−θ θ 
= 1

0.5 θ = 1

4In [4], the minimization was given instead as an infimum with the feasible range of 0 ≤ β′ < p, but it can be shown that for D2 < p,

these two forms are equivalent.
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BSC BSC BSC

Y X
2W 1W

Fig. 6. The optimal forward test channel in Region I-B. The crossover probability for the BSC between X and W2 is D2, while the crossover

probability η for the BSC between W2 and W1 is such that D2 ∗ η = D1.

on the domain

0 ≤ θ1 ≤ θ ≤ 1, 0 ≤ α, β ≤ p, p ≤ γ ≤ 1 − p.

Notice that SD1(·) is continuous at θ = 1.

The following theorem characterizes the rate distortion function RHB(D1,D2) in Region I.

Theorem 8: For distortion pairs (D1,D2) in Region I:

RHB(D1,D2) = minSD1(α, β, θ, θ1)
∆= S∗(D1,D2),

where the minimization is over the domain of SD1(α, β, θ, θ1), subject to the constraint

(θ − θ1)α+ θ1β + (1 − θ)p = D2.

This theorem is proved in Appendix V. One notable consequence in the proof of the forward part of this theorem,

is that W1 can always be taken as the output of a BSC with crossover probability D1 and input X. This observation

is important to determine whether this source is generalized successively refinable.

The following two corollaries are useful, and are straightforward given Theorem 8, which are also proved in

Appendix V. The first corollary provides a lower bound for RHB(D1,D2), which is easy to compute and usually

tighter than the one given in [8].

Corollary 1: For distortion pairs (D1,D2) in Region I:

RHB(D1,D2) ≥ 1 − h(D1 ∗ p) +R∗
X|Y (D2).

Next recall the definition of the critical distortion dc in the Wyner-Ziv problem for the DSBS source, where

G(dc)
dc − p

= G′(dc).

We have the following corollary which specifies a simple forward test channel structure for the case D2 ≤ dc.

Corollary 2: For distortion pairs (D1,D2) such that D1 ≤ 0.5 and D2 ≤ min(dc,D1) (i.e., Region I-B),

RHB(D1,D2) = 1 − h(D1 ∗ p) +G(D2).

From the proof of Corollary 2, it is seen that the optimal forward test channel for this case is in fact a cascade of

two BSC channels depicted in Fig. 6.

B. Successive Refinability for the DSBS Source

From Corollary 1, it is evident that RHB(D1,D2) > R∗
X|Y (D2) unless D1 = 0.5, which implies that the DSBS

is not strictly successively refinable; however, it is generalized successively refinable. This is true because Theorem
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8 and its proof imply that W1 can always be taken as the output of a BSC with crossover probability of D2 and input

X . This W1 and the optimal W2 clearly satisfy the condition in Theorem 7, thus the DSBS is indeed generalized

successively refinable.

VII. CONCLUSION

We provided a characterization of the rate-distortion region for the multistage successive refinement of Wyner-Ziv

problem with degraded side information, which was left open in [5]. A systematical comparison with the achievable

region given in [5] was provided, and the equivalence is established precisely. We also established a source-

channel separation theorem when descriptions are transmitted over independent channels. Conditions for (strictly)

successively refinable are accordingly derived. The notion of generalized successively refinable was introduced, in

order to delineate the two obvious factors which result in the failure of a source being successively refinable. We

showed that the Gaussian source with multiple side informations, as well as the doubly symmetric binary source

when the first stage does not have side information, are in fact generalized successively refinable, but not strictly

successively refinable. As such, their being not successively refinable is only due to the uncertainty on which side

information will occur, but not the progressive encoding requirement.

APPENDIX I

PROOF OF THE CONVERSE OF THEOREM 1

There are a total of N rate constraint inequalities. We consider bounding the rate sum
∑m

i=1Ri for a given m,

where 1 ≤ m ≤ N . Assume the existence of (n,M1,M2, ...,MN ,D1,D2, ...,DN ) SR code, there exist encoding

and decoding functions φi and ψi for 1 ≤ i ≤ N . Denote φi(Xn) as Ti. We will use the notation T j
i to denote the

vector (Ti, Ti+1, ..., Tj) when i ≤ j; if i > j, we take the convention that T j
i is the empty set ∅. (X1,X2, ...,Xn)

will be denoted as X and (Yj,1, Yj,2, ..., Yj,n) as Yj . X−
k will be used to denote the vector (X1,X2, ...,Xk−1) and

X+
k to denote (Xk+1,Xk+2, ...,Xn). For a collection of side informations, denote ((Yi)+k , (Yi+1)+k , ..., (Yj)+k ) as

(Y j
i )+k , and similarly for (Y j

i )−k ; they will be combined when necessary and denoted as (Y j
i )±k . The subscript

k will be dropped when it is obvious from the context. (Y j
i )k is understood as the vector (Yi,k, Yi+1,k, ..., Yj,k).

We will assume m > 2 such that the quantities exist in the following proof, but it is straightforward to verify for

m = 1, 2, that the derivation degenerates in the correct way.
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The following chain of inequalities is straightforward

n
m∑

i=1

Ri ≥ H(Tm
1 )

≥ H(Tm
1 |Y1)

(a)
= H(Tm

1 |Y1) −H(Tm
1 |Y1,X)

= I(X;Tm
1 |Y1) (36)

= I(X;Tm
1 Y m

2 |Y1) −
m∑

j=2

I(X;Yj |Tm
1 Y j−1

1 ) (37)

=
n∑

k=1

[I(Xk;Tm
1 Y m

2 |Y1X−
k ) −

m∑
j=2

I(X;Yj,k|Tm
1 Y j−1

1 (Yj)−k )] (38)

where (a) is because the index is a function of the source, and the last two equalities follow from the chain rule

for mutual information. Define the term in the outer summation of (38) as Γk, i.e.,

Γk = I(Xk;Tm
1 Y m

2 |Y1X−
k ) −

m∑
j=2

I(X;Yj,k|Tm
1 Y j−1

1 (Yj)−k ) (39)

For simplicity, from here on we will drop the subscript k when we refer to the sequences, e.g., we will denote X−
k

by X− and (Yj)−k by Yj
−. We will work primarily with Γk until the very end of the proof. For the first term in

Γk

I(Xk;Tm
1 Y m

2 |Y1X−)
(a)
= I(Xk;Tm

1 Y m
2 Y ±

1 X−|Y1,k) ≥ I(Xk;Tm
1 Y m

2 Y ±
1 |Y1,k) (40)

where (a) follows from the fact that (Xk, Y1,k) is independent of (X−,Y ±
1 ). Because of the Markov string

Yj,k ↔ (Xk, (Y
j−1
1 )k) ↔ (Tm

1 X±(Y j−1
1 )±Yj

−), for each term in the negative summation in Γk, we have

I(X;Yj,k|Tm
1 Y j−1

1 Y −
j ) = I(Xk;Yj,k|Tm

1 Y j−1
1 Y −

j ) (41)

Combining (40) and (41), it follows

Γk ≥ I(Xk;Tm
1 Y m

2 Y ±
1 |Y1,k) −

m∑
j=2

I(Xk;Yj,k|Tm
1 Y j−1

1 Y −
j ) (42)

Applying the chain rule for the positive term in the right hand side of (42), we have

I(Xk;Tm
1 Y m

2 Y ±
1 |Y1,k) = I(Xk;Tm

1 Y ±
1 Y −

2 |Y1,k) + I(Xk;Y2,kY +
2 Y m

3 |Tm
1 Y1Y −

2 ) (43)

For the second term in Eqn. (43), we have

I(Xk;Y2,kY +
2 Y m

3 |Tm
1 Y1Y −

2 ) = I(Xk;Y2,k|Tm
1 Y1Y −

2 ) + I(Xk;Y +
2 Y m

3 |Tm
1 Y1Y −

2 Y2,k)

= I(Xk;Y2,k|Tm
1 Y1Y −

2 ) + I(Xk;Y +
2 Y −

3 |Tm
1 Y1Y −

2 Y2,k) + I(Xk;Y3,kY +
3 Y m

4 |Tm
1 Y 2

1 Y −
3 )

= I(Xk;Y2,k|Tm
1 Y1Y −

2 ) + I(Xk;Y +
2 Y −

3 |Tm
1 Y1Y −

2 Y2,k)

+ I(Xk;Y3,k|Tm
1 Y 2

1 Y −
3 ) + I(Xk;Y +

3 Y m
4 |Tm

1 Y 2
1 Y −

3 Y3,k). (44)
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Continuing this decomposition, it finally gives

I(Xk;Y2,kY +
2 Y m

3 |Tm
1 Y1Y −

2 ) =
m∑

j=2

I(Xk;Yj,k|Tm
1 Y j−1

1 Y −
j )

+
m−1∑
j=2

I(Xk;Yj
+Y −

j+1|Tm
1 Y j−1

1 Y −
j Yj,k) + I(Xk;Y +

m |Tm
1 Y m−1

1 Y −
m Ym,k). (45)

Substituting this in (43), we get

I(Xk;Tm
1 Y m

2 Y ±
1 |Y1,k) = I(Xk;Tm

1 Y ±
1 Y −

2 |Y1,k) +
m∑

j=2

I(Xk;Yj,k|Tm
1 Y j−1

1 Y −
j )

+
m−1∑
j=2

I(Xk;Yj
+Y −

j+1|Tm
1 Y j−1

1 Y −
j Yj,k) + I(Xk;Y +

m |Tm
1 Y m−1

1 Y −
m Ym,k). (46)

Therefore, substituting (46) into (42) we see that the negative term in (42) cancels out the second term on the RHS

of (46), which gives

Γk ≥ I(Xk;Tm
1 Y1

±Y −
2 |Y1,k)

+
m−1∑
j=2

I(Xk;Y +
j Y −

j+1|Tm
1 Y j−1

1 Y −
j Yj,k) + I(Xk;Y +

m |Tm
1 Y m−1

1 Y −
m Ym,k). (47)

For the first term in (47), we have

I(Xk;Tm
1 Y ±

1 Y −
2 |Y1,k) = I(Xk;T1Y

±
1 |Y1,k) + I(Xk;Tm

2 Y −
2 |T1Y1). (48)

We claim that

I(Xk;Tm
2 Y −

2 |T1Y1) ≥ I(Xk;Tm
2 Y −

2 |T1Y1Y2,k) (49)

and more generally for 2 ≤ j ≤ m

I(Xk;Tm
j Y −

j |T j−1
1 Y j−1

1 ) ≥ I(Xk;Tm
j Y −

j |T j−1
1 Y j−1

1 Yj,k) (50)

which can be justified as follows

I(Xk;Tm
j Y −

j |T j−1
1 Y j−1

1 ) − I(Xk;Tm
j Y −

j |T j−1
1 Y j−1

1 Yj,k)

= H(Xk|T j−1
1 Y j−1

1 ) −H(Xk|Tm
1 Y j−1

1 Y −
j )

−H(Xk|T j−1
1 Y j−1

1 Yj,k) +H(Xk|Tm
1 Y j−1

1 Y −
j Yj,k)

= I(Xk;Yj,k|T j−1
1 Y j−1

1 ) − I(Xk;Yj,k|Tm
1 Y −

j Y j−1
1 )

= H(Yj,k|T j−1
1 Y j−1

1 ) −H(Yj,k|XkT
j−1
1 Y j−1

1 )

−H(Yj,k|Tm
1 Y −

j Y j−1
1 ) +H(Yj,k|XkT

m
1 Y −

j Y j−1
1 )

(a)
= I(Yj,k;Tm

j Y −
j |T j−1

1 Y j−1
1 ) ≥ 0 (51)

where (a) is due to the Markov condition Yj,k ↔ (Xk, (Y
j−1
1 )k) ↔ (Tm

1 Y −
j (Y j−1

1 )±X±) implies the reduced

Markov condition Yj,k ↔ (Xk, (Y
j−1
1 )k) ↔ (Tm

1 Y −
j (Y j−1

1 )±). Assume for now m > 2, and consider the
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following summation of the second term in (48) and the second term in (47)

I(Xk;Tm
2 Y −

2 |T1Y1) +
m−1∑
j=2

I(Xk;Y +
j Y −

j+1|Tm
1 Y j−1

1 Y −
j Yj,k)

(a)

≥ I(Xk;Tm
2 Y −

2 |T1Y1Y2,k) +
m−1∑
j=2

I(Xk;Y +
j Y −

j+1|Tm
1 Y j−1

1 Y −
j Yj,k)

= I(Xk;Tm
2 Y −

2 |T1Y1Y2,k) + I(Xk;Y2
+Y −

3 |Tm
1 Y1Y −

2 Y2,k)

+
m−1∑
j=3

I(Xk;Y +
j Y −

j+1|Tm
1 Y j−1

1 Y −
j Yj,k)

(b)
= I(Xk;Tm

2 Y2
±Y −

3 |T1Y1Y2,k) +
m−1∑
j=3

I(Xk;Yj
+Y −

j+1|Tm
1 Y j−1

1 Y −
j Yj,k)

= I(Xk;T2Y2
±|T1Y1Y2,k) + I(Xk;Tm

3 Y −
3 |T 2

1 Y 2
1 ) +

m−1∑
j=3

I(Xk;Y +
j Y −

j+1|Tm
1 Y j−1

1 Y −
j Yj,k),

(52)

where (a) follows because of (50) and (b) follows due to chain rule. Notice for the second term in (52), we can

again apply inequality (50), and continue sequentially along this way, which finally gives

I(Xk;Tm
2 Y −

2 |T1Y1) +
m−1∑
j=2

I(Xk;Y +
j Y −

j+1|Tm
1 Y j−1

1 Y −
j Yj,k)

≥
m−1∑
j=2

I(Xk;TjY
±

j |T j−1
1 Y j−1

1 Yj,k) + I(Xk;TmY −
m |Tm−1

1 Y m−1
1 ) (53)

Combining (47), (48) and (53) gives

Γk ≥ I(Xk;T1Y
±
1 |Y1,k) +

m−1∑
j=2

I(Xk;TjY
±

j |T j−1
1 Y j−1

1 Yj,k)

+I(Xk;TmY −
m |Tm−1

1 Y m−1
1 ) + I(Xk;Y +

m |Tm
1 Y m−1

1 Y −
m Ym,k) (54)

≥
m∑

j=1

I(Xk;TjY
±

j |T j−1
1 Y j−1

1 Yj,k). (55)

where inequality (50) is applied on the third term in (54). It is straightforward to verify that inequality (55) is still

valid if m = 1 or m = 2, when the proper convention of empty set is taken.

In (55), the conditioning on (Y j−1
1 )k has to be removed to reach the desired form, which can indeed be done

due to the degradedness of the side informations. More precisely, for 2 ≤ j ≤ m

I(Xk;TjY
±

j |T j−1
1 Y j−1

1 Yj,k) − I(Xk;TjY
±

j |T j−1
1 (Y j−1

1 )±Yj,k)

= H(Xk|T j−1
1 Y j−1

1 Yj,k) −H(Xk|T j
1 Y j

1 ) −H(Xk|T j−1
1 (Y j−1

1 )±Yj,k) +H(Xk|T j
1 (Y j

1 )±Yj,k)

= −I(Xk; (Y j−1
1 )k|T j−1

1 (Y j−1
1 )±Yj,k) + I(Xk; (Y j−1

1 )k|T j
1 (Y j

1 )±Yj,k) = 0 (56)

where in fact both the terms in the (56) are zero, due to the Markov condition (Y j−1
1 )k ↔ Yj,k ↔ (XTm

1 (Y m
1 )±)
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implies the reduced Markov condition (Y j−1
1 )k ↔ Yj,k ↔ (XkT

j
1 (Y j

1 )±). Thus we reach the form

Γk ≥
m∑

j=1

I(Xk;TjYj
±|T j−1

1 (Y j−1
1 )±Yj,k) =

m∑
j=1

I(Xk;T j
1 Yj

±|T j−1
1 (Y j−1

1 )±Yj,k). (57)

Define Wj,k = (T j
1 , (Y j)±k ) and by substituting (57) into (38) we have for 1 ≤ m ≤ N ,

n

m∑
i=1

Ri ≥
n∑

k=1

m∑
j=1

I(Xk;Wj,k|(W j−1
1 )k, Yj,k) (58)

Therefore the Markov condition (W1,k,W2,k, ...,WN,k) ↔ Xk ↔ YN,k ↔ YN−1,k ↔ ... ↔ Y1,k is true. Next

introduce the time sharing random variable Q, which is independent of the multisource, and uniformly distributed

over In. Define Wj = (Wj,Q, Q). The existence of function fj follows by defining

fj(Wj , Yj) = ψj,Q(φ1(X), φ2(X), ..., φj(X),Yj) (59)

because Wj includes T j
1 Yj

±, which leads to the fulfillment of the distortion constraint

Ed(X, fj(Wj , Yj)) =
1
n

n∑
i=1

Ed(Xi, ψj,i(φ1(X), φ2(X), ..., φj(X),Yj)) ≤ Dj , 1 ≤ j ≤ N

(60)

and the Markov condition (W1,W2, ...,WN ) ↔ X ↔ YN ↔ YN−1 ↔ ... ↔ Y1 is still true. It only remains to

show the bound (58) can be writen in single letter form in Wj , but this is straightforward following the approach

on pg. 435 of [15] (see also [5]). The bounds on the alphabet size is by applying conventional argument (see [16]).

This completes the proof.

APPENDIX II

PROOF OF THEOREM 2

The forward part is trivially implied by Theorem 1 and the conventional channel coding theorem, and thus we

only give an outline of the converse part.

By Lemma 8.9.2 in [15], we have

n

m∑
i=1

ρiCi ≥
m∑

i=1

I(Xni
c,i;Y

ni
c,i ) (61)

where ni = nρi, and ρi is the number of channel use per source symbol for the i-th channel. Notice that

I(Xn1
c,1X

n2
c,2, ...,X

nm
c,m;Y n1

c,1Y
n2
c,2 , ..., Y

nm
c,m )

(a)
= I(Xn1

c,1X
n2
c,2, ...,X

nm
c,m;Y n1

c,1 ) + I(Xn1
c,1X

n2
c,2, ...,X

nm
c,m;Y n2

c,2Y
n3
c,3 , ..., Y

nm
c,m |Y n1

c,1 )

(b)
= I(Xn1

c,1;Y
n1
c,1 ) + I(Xn1

c,1X
n2
c,2, ...,X

nm
c,m;Y n2

c,2Y
n3
c,3 , ..., Y

nm
c,m |Y n1

c,1 )

= I(Xn1
c,1;Y

n1
c,1 ) +H(Y n2

c,2Y
n3
c,3 , ..., Y

nm
c,m |Y n1

c,1 ) −H(Y n2
c,2Y

n3
c,3 , ..., Y

nm
c,m |Y n1

c,1X
n1
c,1X

n2
c,2, ...,X

nm
c,m)

(c)
= I(Xn1

c,1;Y
n1
c,1 ) +H(Y n2

c,2Y
n3
c,3 , ..., Y

nm
c,m |Y n1

c,1 ) −H(Y n2
c,2Y

n3
c,3 , ..., Y

nm
c,m |Xn2

c,2, ...,X
nm
c,m)

(d)

≤ I(Xn1
c,1;Y

n1
c,1 ) +H(Y n2

c,2Y
n3
c,3 , ..., Y

nm
c,m ) −H(Y n2

c,2Y
n3
c,3 , ..., Y

nm
c,m |Xn2

c,2, ...,X
nm
c,m)

= I(Xn1
c,1;Y

n1
c,1 ) + I(Y n2

c,2Y
n3
c,3 , ..., Y

nm
c,m ;Xn2

c,2, ...,X
nm
c,m) (62)
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where (a) is by chain rule, and (b) and (c) are because the channels are independent, i.e.,

PYc,1Yc,2,...,Yc,m|Xc,1Xc,2,...,Xc,m
= PYc,1|Xc,1PYc,2|Xc,2 ...PYc,m|Xc,m

(63)

which implies the Markov conditions {Xc,j}j �=i ↔ Xc,i ↔ Yc,i and {Yc,j}j �=i ↔ {Xc,j}j �=i ↔ (Xc,i, Yc,i); (d) is

because conditioning reduces entropy.

Continue this decomposition and combine it with (61), we have

n

m∑
i=1

ρiCi ≥
m∑

i=1

I(Xni
c,i;Y

ni
c,i ) ≥ I(Xn1

c,1X
n2
c,2, ...,X

nm
c,m;Y n1

c,1Y
n2
c,2 , ..., Y

nm
c,m )

(a)

≥ I(Xn;Y n1
c,1Y

n2
c,2 , ..., Y

nm
c,m )

(b)
= I(XnY n

1 ;Y n1
c,1Y

n2
c,2 , ..., Y

nm
c,m )

= I(Y n
1 ;Y n1

c,1Y
n2
c,2 , ..., Y

nm
c,m ) + I(Xn;Y n1

c,1Y
n2
c,2 , ..., Y

nm
c,m |Y n

1 )

≥ I(Xn;Y n1
c,1Y

n2
c,2 , ..., Y

nm
c,m |Y n

1 ) (64)

where (a) is due to data processing inequality, and (b) because the Markov chain Y1 ↔ X ↔ Yc,i. At this point

the similarity between (64) and (36) is quite clear. Using the same steps as in the derivation as in the proof of

Theorem 1, the converse of Theorem 2 is proved.

APPENDIX III

PROOF OF THEOREM 3

We first prove for the special case N = 2 without invoking Theorem 1 that R∗(D) = R(D). The proof of

Theorem 3 then follows from invoking Theorem 1 for one direction and extending the proof of N = 2 for the other

direction.

Proof for the case of N = 2

We first prove that R̂∗
2(D) ⊆ R∗

2(D), where the subscript 2 stands for N = 2. For an arbitrary rate pair (r1, r2) ∈
R̂∗

2(D1,D2), there exist 3 random variables V1,1, V1,2 and V2,2, and the corresponding functions f1(V1,1, Y1) and

f2(V2,2, Y2), such that

r1 ≥ I(X;V1,1|Y1) + I(X;V1,2|V1,1, Y2) (65)

r2 ≥ I(X;V2,2|V1,1, V1,2, Y2) (66)

and the distortion constraints are satisfied. Inequalities (65) and (66) imply that

r1 ≥ I(X;V1,1|Y1)

r1 + r2 ≥ I(X;V1,1|Y1) + I(X;V1,2|V1,1, Y2) + I(X;V2,2|V1,1, V1,2, Y2)

= I(X;V1,1|Y1) + I(X;V1,2, V2,2|V1,1, Y2)
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Now define W1 = V1,1 and W2 = (V1,1, V1,2), and it follows that

r1 ≥ I(X;W1|Y1)

r1 + r2 ≥ I(X;W1|Y1) + I(X;W2|W1, Y2)

and (W1,W2) is a pair of random variables satisfying the condition for R∗
2(D1,D2) and thus (r1, r2) ∈ R∗

2(D1,D2),

which shows that R̂∗
2(D) ⊆ R∗

2(D) since trivially the distortion constraints are also met.

To prove the other direction, i.e., R̂∗
2(D1,D2) ⊇ R∗

2(D1,D2), assume (r1, r2) ∈ R∗
2(D1,D2). There exist

random variables W1 and W2, and two corresponding functions f1(W1, Y1) and f2(W2, Y2), such that

r1 ≥ I(X;W1|Y1) (67)

r1 + r2 ≥ I(X;W1|Y1) + I(X;W2|W1, Y2) (68)

and the distortion constraints are met. Let ∆r1 = r1 − I(X;W1|Y1). We claim that for any 0 ≤ ∆r1 ≤
I(X;W2|W1, Y2), there exists a random variable V , such that

∆r1 = I(X;V |W1, Y2) (69)

I(X;V |W1, Y2) + I(X;W2|W1, V, Y2) = I(X;W2|W1, Y2). (70)

There are many ways to construct V , for example we can construct V = (W2(J), J), where J is a Bernoulli

random variable independent of everything else with p(J = 1) = u; when J = 1, W2(J) = W2 and W2(J) is a

fixed constant otherwise; I(X;V |W1, Y2) can be any real value in the interval [0, I(X;W2|W1, Y2)] by choosing u

appropriately. For a more thorough treatment on this topic in the context of rate splitting in multiple access channel,

see [17]. It follows that for this case

r1 = I(X;W1|Y1) + I(X;V |W1, Y2) (71)

r2 ≥ I(X;W1|Y1) + I(X;W2|W1, Y2) − r1

= I(X;W2|W1, V, Y ). (72)

Now define V1,1 = W1, V1,2 = V and V2,2 = W2. The random variables (V1,1, V1,2, V2,2) clearly satisfy the

definition given for R̂∗(D1,D2), and thus (r1, r2) ∈ R̂∗(D1,D2) for this case. On the other hand, if ∆r1 ≥
I(X;W2|W1, Y2), then defines V1,1 = W1, V1,2 = W2 and V2,2 = W2. The non-negativity condition r2 ≥ 0 implies

r2 ≥ I(X;V2,2|V1,1, V1,2, Y2). Since the reconstruction functions f1(W1, Y1) = f1(V1,1, Y1) and f2(W2, Y2) =

f2(V2,2, Y2) satisfy the distortion constraints, the proof is completed.

Proof of Theorem 3

Since R̂∗(D) is an achievable region, we have trivially R̂∗(D) ⊆ R(D) = R∗(D) due to Theorem 1. For

the inclusion of the other direction, the proof for the case N = 2 can clearly be extended straightforwardly, by

sequentially constructing random variable corresponding to {Vi,j}, j ≥ i. This completes the proof for Theorem 3.
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APPENDIX IV

LOWER BOUND ON THE SUM-RATE FOR THE GAUSSIAN SOURCE

To lower bound the sum-rate to achieve (D1,D2) with side information (Y1, Y2), consider the following quantity,

I(X;W1|Y1) + I(X;W2|W1, Y2)

= H(X|Y1) −H(X|W1, Y1) +H(X|W1, Y2) −H(X|W1,W2, Y2)

(a)
= H(X|Y1) −H(X|W1,W2, Y2) − I(X;Y2|W1, Y1) (73)

(b)
= H(X|Y1) −H(X|W1,W2, Y2) −H(Y2|W1, Y1) +H(Y2|X,Y1) (74)

where we can see (a) follows since I(W1,X;Y1|Y2) = I(W1;Y1|Y2) + I(X;Y1|W1, Y2) = 0 due to the Markov

condition W1 ↔ X ↔ Y2 ↔ Y1, which implies that I(X;Y1|W1, Y2) = H(X|W1, Y2) −H(X|W1, Y2, Y1) = 0.

In an identical manner (b) is due to, I(W1;Y2|X,Y1) = H(Y2|X,Y1) − H(Y2|X,Y1,W1) = 0. The quantities

H(X|Y1) and H(Y2|X,Y1) are only dependent on the multi-source. We bound the second term in (74) as follows

H(X|W1,W2, Y2) = H(X − E(X|W1,W2, Y2)|W1,W2, Y2)

≤ H(X − E(X|W1,W2, Y2))

≤ H(N (0,E(X − E(X|W1,W2, Y2))2)) (75)

≤ 1
2

log(2πeD2) (76)

where in (75) we use the fact that normal distribution maximizes the entropy for a given second moment, and in (76)

the fact that the variance of E(X−E(X|W1,W2, Y2))2 ≤ D2 because of the existence of function f2(W1,W2, Y2)

to reconstruct X with distortion D2.

To bound the third term in (74), write Y2 = X +N2 as follows

X +N2 = X +N2 +
σ2

2

σ2
1 + σ2

2

(N1 +N2) − σ2
2

σ2
1 + σ2

2

(N1 +N2)

=
σ2

2

σ2
1 + σ2

2

(X +N1 +N2) +
σ2

1

σ2
1 + σ2

2

X + [N2 − σ2
2

σ2
1 + σ2

2

(N1 +N2)]

= γY1 + (1 − γ)X + [(1 − γ)N2 − γN1],

where γ = σ2
2

σ2
1+σ2

2
as in Section V. It can be seen that [(1 − γ)N2 − γN1] is independent of Y1, by checking the

fact E(Y1[(1 − γ)N2 − γN1]) = 0 and recalling that they are jointly zero-mean Gaussian. Further notice X is
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independent of (N1, N2), which implies [(1 − γ)N2 − γN1] is also independent of W1. Thus we have

H(Y2|W1, Y1) = H(γY1 + (1 − γ)X + [(1 − γ)N2 − γN1]|W1, Y1)

= H((1 − γ)X + [(1 − γ)N2 − γN1]|W1, Y1)

= H((1 − γ)[X − E(X|W1, Y1)] + [(1 − γ)N2 − γN1]|W1, Y1)

≤ H((1 − γ)[X − E(X|W1, Y1)] + [(1 − γ)N2 − γN1])

≤ H(N (0,E{(1 − γ)[X − E(X|W1, Y1)] + [(1 − γ)N2 − γN1]}2)) (77)

≤ H(N (0, (1 − γ)2D1 + (1 − γ)2σ2
2 + γ2σ2

1)) (78)

=
1
2

log[2πe((1 − γ)2D1 + (1 − γ)2σ2
2 + γ2σ2

1))]

=
1
2

log[2πe((1 − γ)2D1 + γσ2
1))] (79)

where in (78), we used the fact that [X −E(X|W1, Y1)] is independent of [(1− γ)N2 − γN1]. Using (76) and (79)

in (74) gives

R1 +R2 ≥ 1
2

log
σ2

xσ
2
1σ

2
2

D2(σ2
x + σ2

1 + σ2
2)((1 − γ)2D1 + γσ2

1)
(80)

Note that this lower bound is only tight and achievable when both D1 and D2 are effective, i.e., in Region I. When

D2 is not effective, the bound that

R1 +R2 ≥ R1 ≥ 1
2

log(
σ2

x(σ2
1 + σ2

2)
D1(σ2

x + σ2
1 + σ2

2)
)

is in fact achievable with equality. By comparing the above two bounds, it can be seen that this corresponds to the

condition D2 ≤ γD1σ2
1

(1−γ)2D1+γσ2
1

or equivalently D1 ≥ γσ2
1D2

γσ2
1−(1−γ)2D2

when D2 ≤ D∗
2 .

APPENDIX V

PROOF OF THE THEOREM AND COROLLARIES FOR THE DSBS

A. Proof of Theorem 8

We will need the following lemma from [8] to simplify the calculation.

Lemma 1: For (W1,W2) ∈ p(D1,D2)

I(X;W1) + I(X;W2|YW1) = H(X) −H(Y |W1) +H(Y |W1W2) −H(X|W1W2). (81)

The lower bound

Let (W1,W2) ∈ P (D1,D2) define a joint distribution with (X,Y ). Furthermore, assume the functions f1 and f2

are optimal for these random variables, i.e., there do not exist f ′1 (or f ′2), such that Ed(X, f ′1(W1)) < Ed(X, f1(W1))

(or Ed(X, f ′2(W1,W2, Y )) < Ed(X, f2(W1,W2, Y ))), because otherwise we can consider the alternative functions

f ′1 (or f ′2) without loss of optimality. Our goal is to show that I(X;W1) + I(X;W2|YW1) ≥ S∗(D1,D2), then

invoke the rate distortion theorem, by which the lower bound can be established.
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Similar as in [4][8], define the following set

A = {(w1, w2) : f2(w1, w2, 0) = f2(w1, w2, 1)}, (82)

which defines its complement as,

Ac = W1 ×W2 −A = {(w1, w2) : f2(w1, w2, 0) 
= f2(w1, w2, 1)}. (83)

For each w1 ∈ W1, define the following two sets

B(w1) = {w2 ∈ W2 : (w1, w2) ∈ A, f1(w1) = f2(w1, w2, 0)},

B∗(w1) = {w2 ∈ W2 : (w1, w2) ∈ A, f1(w1) 
= f2(w1, w2, 0)}.

Notice that for each fixed w∗
1 ∈ W1, we have W2 = B(w∗

1) ∪B∗(w∗
1) ∪ {w2 : (w∗

1 , w2) ∈ Ac}, and the three sets

are disjoint. To simplify the notations, write P{(W1W2) = (w1w2)} as Pw1w2 , and P{W1 = w1} as Pw1 . Define

the following quantity for each w1 ∈ W1

D1,w1

∆= E[d(X, X̂1)|W1 = w1] = P{X 
= f1(w1)|W1 = w1}

and define the following quantity for each (w1, w2) ∈ A,

D2,w1w2

∆= E[d(X, X̂2)|(W1,W2) = (w1, w2)] = P{X 
= f2(w1, w2, 0)|(W1,W2) = (w1, w2)}.

By the Markov string Y ↔ X ↔ (W1,W2), it follows that for each w1 ∈ W1

H(X|W1 = w1) = h(D1,w1), H(Y |W1 = w1) = h(p ∗D1,w1), (84)

where as before u ∗ v def
= u(1 − v) + v(1 − u). For each (w1, w2) ∈ A, we have

H[X|(W1,W2 = w1, w2)] = h(D2,w1w2), H[Y |(W1,W2) = (w1, w2)] = h(p ∗D2,w1w2). (85)

And furthermore, for each (w1, w2) ∈ Ac, we have

H[X|(W1,W2 = w1, w2)] = h(P{X 
= f1(w1)|W1 = w1,W2 = w2})

H[Y |(W1,W2) = (w1, w2)] = h(p ∗ P{X 
= f1(w1)|W1 = w1,W2 = w2}). (86)

We will also need the following quantities

θ
∆= P{(W1,W2) ∈ A}, θ1

∆= P{(W1,W2) ∈ {(w1, w2) : w2 ∈ B(w1)}}. (87)

Clearly, we have

H(X) −H(Y |W1) = 1 −
∑

w1∈W1

Pw1H(Y |W1 = w1)

= 1 −
∑

w1∈W1

Pw1h(p ∗D1,w1)

≥ 1 − h(p ∗D′
1) (88)
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where we have used the concavity of function h(p ∗ u) in the last step and

D′
1

∆=
∑

w1∈W1

Pw1D1,w1 .

Furthermore we have

H(Y |W1W2) −H(X|W1W2)

=
∑

(w1,w2)∈A

Pw1,w2 [H(Y |(W1,W2) = (w1, w2)) −H(X|(W1,W2) = (w1, w2))]

+
∑

(w1,w2)∈Ac

Pw1,w2 [H(Y |(W1,W2) = (w1, w2)) −H(X|(W1,W2) = (w1, w2))]

The first term can be bounded as follows

∑
(w1,w2)∈A

Pw1,w2 [H(Y |(W1,W2) = (w1, w2)) −H(X|(W1,W2) = (w1, w2))]

=
∑
w1

∑
w2∈B(w1)

Pw1,w2 [h(p ∗D2,w1w2) − h(D2,w1w2)]

+
∑
w1

∑
w2∈B∗(w1)

Pw1,w2 [h(p ∗D2,w1w2) − h(D2,w1w2)]

≥ θ1G(β) + (θ − θ1)G(α), (89)

where as before G(u) ∆= h(p ∗ u) − h(u), and

α
∆=

∑
w1

∑
w2∈B∗(w1)

Pw1w2

θ − θ1
D2,w1w2 , β

∆=
∑
w1

∑
w2∈B(w1)

Pw1w2

θ1
D2,w1w2 , (90)

and the convexity of function G(u) is used in the last step. Next, notice the identity that for each w1 ∈ W1

Pw1D1,w1 = P{X 
= f1(w1),W1 = w1}

=
∑

w2∈B(w1)

P{X 
= f2(w1, w2, 0),W1 = w1,W2 = w2}

+
∑

w2∈B∗(w1)

P{X = f2(w1, w2, 0),W1 = w1,W2 = w2}

+
∑

w2:(w1,w2)∈Ac

P{X 
= f1(w1),W1 = w1,W2 = w2}

=
∑

w2∈B(w1)

Pw1w2D2,w1w2 +
∑

w2∈B∗(w1)

Pw1w2(1 −D2,w1w2)

+
∑

w2:(w1,w2)∈Ac

Pw1w2P{X 
= f1(w1)|W1 = w1,W2 = w2}. (91)

It follows that

∑
(w1,w2)∈Ac

Pw1,w2 [H(Y |(W1,W2) = (w1, w2)) −H(X|(W1,W2) = (w1, w2))]

=
∑
w1

∑
w2:(w1,w2)∈Ac

Pw1,w2G[P{X 
= f1(w1)|(W1,W2) = (w1, w2)}]

≥ (1 − θ)G(γ), (92)
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where again the convexity of function G(u) is used, and because of the identity (91), we have

γ =
∑
w1

∑
w2:(w1,w2)∈Ac

Pw1w2

1 − θ
P{X 
= f1(w1)|W1 = w1,W2 = w2}

=
D′

1 − θ1β − (θ − θ1)(1 − α)
1 − θ

. (93)

It was shown in [8], by a straightforward generalization of the argument in [4], that

E[d(X, X̂2)|(W1,W2) ∈ Ac] ≥ p. (94)

By the hypothesis

D′
2

∆= θ1β + (θ − θ1)α+ (1 − θ)p ≤ D2

D′
1 ≤ D1.

Notice that for each (w1, w2) ∈ A, D2,w1w2 ≤ p, because otherwise for this (w1, w2) pair, making f2(w1, w2, Y ) =

Y will in fact reduce the distortion, which contradicts with the optimality of the decoding function. Thus 0 ≤ α, β ≤
p. Similarly, p ≤ γ ≤ 1− p, because p ≤ P{X 
= f1(w1)|W1 = w1,W2 = w2} ≤ 1− p, otherwise we can modify

the decoder function f2 to reduce the distortion. Clearly, 0 ≤ θ1 ≤ θ ≤ 1 by definition.

Summarizing the bounds, we have shown that

RHB(D1,D2) ≥ min
(α,β,θ,θ1,D′

1)∈Q≥
[1 − h(D′

1 ∗ p) + (1 − θ)G(γ) + θ1G(β) + (θ − θ1)G(α)], (95)

where the minimization is within the following set

Q≤ = {(α, β, θ, θ1,D′
1) : (1 − θ)p ≤ D′

1 − (θ − θ1)(1 − α) − θ1β ≤ (1 − θ)(1 − p),

0 ≤ θ1 ≤ θ ≤ 1, 0 ≤ α, β ≤ p, (θ − θ1)α+ θ1β + (1 − θ)p ≤ D2, D′
1 ≤ D1}.

This is not yet the function given in Theorem 8, because the minimization given there is within the set

Q= = {(α, β, θ, θ1,D′
1) : (1 − θ)p ≤ D′

1 − (θ − θ1)(1 − α) − θ1β ≤ (1 − θ)(1 − p),

0 ≤ θ1 ≤ θ ≤ 1, 0 ≤ α, β ≤ p, (θ − θ1)α+ θ1β + (1 − θ)p = D2, D′
1 = D1}.

This gap will be closed after we give the forward test channel structure.

The upper bound

We explicitly construct the random variables with joint pmf given in Table I. It is straightforward to verify

that it is a valid pmf, given the conditions in the definition of SD1(α, β, θ, θ1). Furthermore, the rate I(X;W1) +

I(X;W2|W1Y ) is exactly SD1(α, β, θ, θ1). The decoding functions are f1(W1) = W1 and f2(W1,W2, Y ) = W2

if W2 
= 2, otherwise f2(W1,W2, Y ) = Y . This establishes the upper bound.

Now we show that the gap aforementioned in the proof of the lower bound can be closed. Suppose that the

parameters that minimize the right hand side of (95) are (α, β, θ, θ1,D′
1), and furthermore D′

1 < D1. The set
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w1 = 0 w1 = 1

x = 0 x = 1 x = 0 x = 1

w2 = 0 0.5θ1(1 − β) 0.5θ1β 0.5(θ − θ1)(1 − α) 0.5(θ − θ1)α

w2 = 1 0.5(θ − θ1)α 0.5(θ − θ1)(1 − α) 0.5θ1β 0.5θ1(1 − β)

w2 = 2 0.5(1 − θ)(1 − γ) 0.5(1 − θ)γ 0.5(1 − θ)γ 0.5(1 − θ)(1 − γ)

p(x, w1) 0.5(1 − D1) 0.5D1 0.5D1 0.5(1 − D1)

TABLE I

JOINT DISTRIBUTION p(x, w1, w2) AND THE MARGINAL p(x, w1).

of random variables W ′
1,W

′
2 can be constructed as given in Table I with D′

1 replacing D1. By the lower bound

established above, we have

RHB(D1,D2) ≥ I(X;W ′
1) + (X;W ′

2|W ′
1Y ). (96)

Consider a random variable W ′′
1 = W ′

1⊕N , where N is a Bernoulli random variable independent of everything else

with P (N = 1) = η such that η ∗D′
1 = D1 = D′′

1 , which is valid since max{D1,D
′
1} ≤ 1

2 . Let W ′′
2 = (W ′

1,W
′
2),

and we have (W ′′
1 ,W

′′
2 ) ∈ P (D1,D2). Clearly, W ′′

1 ↔ W ′
1 ↔ X ↔ Y , and W ′′

1 ↔ W ′
1 ↔ W ′

2. Thus by the rate

distortion theorem for this problem

I(X;W ′′
1 ) + I(X;W ′′

2 |W ′′
1 Y ) ≥ RHB(D1,D2). (97)

Notice that

I(X;W ′
1) + I(X;W ′

2|W ′
1Y )

(a)
= I(X;W ′

1,W
′′
1 ) + I(X;W ′′

1 ,W
′
2|W ′

1Y )

= I(X;W ′′
1 ) + I(X;W ′

1|W ′′
1 ) + I(X;W ′

2|W ′
1W

′′
1 Y )

(b)
= I(X;W ′′

1 ) + I(X;W ′
1|W ′′

1 ) + I(X;W ′
1W

′
2|W ′′

1 Y ) − I(X;W ′
1|W ′′

1 Y )

(c)
= I(X;W ′′

1 ) + I(X;W ′
1W

′
2|W ′′

1 Y ) + I(Y ;W ′
1|W ′′

1 )

= I(X;W ′′
1 ) + I(X;W ′

1W
′
2|W ′′

1 Y ) + h(p ∗D′′
1 ) − h(p ∗D′

1)

> I(X;W ′′
1 ) + I(X;W ′

1W
′
2|W ′′

1 Y )

where (a) and (c) follow because of the Markov chain W ′′
1 ↔ W ′

1 ↔ X ↔ Y , (b) is by applying chain rule to

the last term in the previous line, and the last step is because p < 0.5 and D′
1 < D1 = D′′

1 ≤ 0.5. However, this

implies

I(X;W ′′
1 ) + I(X;W ′

1W
′
2|W ′′

1 Y ) ≥ RHB(D1,D2)

≥ I(X;W ′
1) + (X;W ′

2|W ′
1Y ) > I(X;W ′′

1 ) + I(X;W ′
1W

′
2|W ′′

1 Y )

which is a contradiction. Thus we conclude that the minimum must be achieved with D′
1 = D1.
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Next we show that the constraint (θ − θ1)α + θ1β + (1 − θ)p ≤ D2 can be met with equality without loss of

optimality; i.e.,

min
(α,β,θ,θ1,D′

1)∈Q≥
[1 − h(D′

1 ∗ p) + (1 − θ)G(γ) + θ1G(β) + (θ − θ1)G(α)]

= min
(α,β,θ,θ1,D′

1)∈Q=

[1 − h(D′
1 ∗ p) + (1 − θ)G(γ) + θ1G(β) + (θ − θ1)G(α)]. (98)

Suppose otherwise, such that the parameters (α, β, θ, θ1,D1) minimizing the right hand side of Eqn. (95) satisfy

(θ − θ1)α + θ1β + (1 − θ)p < D2. parameters (α, β, θ, θ1,D1) ∈ Q= will result in a strict increase in the rate.

If θ = 0, the contradiction is trivial: either α or β can be increase to reduce the rate. When θ < 1, but α, β < p,

γ ∈ (p, 0.5)∪(0.5, 1−p) and 0 < θ1 < θ, it is also trivial to construct such parameters, by disturbing (incrementally)

α or β. Thus the only remaining cases are the follows, and we will ignore the term 1 − h(p ∗D1) in the sequel:

• p ≤ γ ≤ 0.5, α = p and θ1 < θ. In this case, notice that

(1 − θ)G(γ) + θ1G(β) + (θ − θ1)G(α) = (1 − θ)G(γ) + θ1G(β) + (θ − θ1)G(1 − α)

> (1 − θ1)G(
D1 − θ1β

1 − θ1
) + θ1G(β),

where the inequality is due to the strict convexity of G(u). Furthermore, notice that p ≤ D1−θ1β
1−θ1

≤ 1 − p,

since it is a convex combination of γ and 1 − p. However, this implies the set of parameters (p, β, θ1, θ1)

strictly improves over the minimum, which is a contradiction.

• p ≤ γ ≤ 0.5 and θ = θ1. Let ε be a small positive quantity to be specified later. First notice the condition

implies that β < p for any D2 < p, then

(1 − θ)G(γ) + θG(β) = (1 − θ − ε)G(γ) + εG(γ) + θG(β)

> (1 − θ − ε)G(γ) + (θ + ε)G(β′),

where the inequality is due to the strictly convexity of G(u) and

β′ ∆=
ε(D1 − θβ)

(ε+ θ)(1 − θ)
+

θβ

ε+ θ
. (99)

Notice further that

γ =
D1 − θβ

1 − θ
=
D1 − (θ + ε)β′

1 − θ − ε
(100)

thus by choosing a sufficient small ε > 0, the following two conditions can be satisfied simultaneously,

(θ + ε)β′ + (1 − θ − ε)p = θβ + (1 − θ − ε)p+ ε(γ − p) ≤ D2, β′ ≤ p. (101)

This implies that (p, β′, θ + ε, θ + ε) strictly improves over the minimum, which is a contradiction.

• 0.5 ≤ γ ≤ 1 − p, β = p and θ1 > 0. The contradiction is similarly constructed as the first case.

• 0.5 ≤ γ ≤ 1 − p and θ1 = 0. This is an impossible case, since α ≤ p and D1 ≤ 0.5.

• λ = 0.5 and 0 < θ1 < θ, 0 ≤ α, β < p. In this case, perturbing α, β together incrementally gives a

contradiction.

Thus there is no loss of optimality by replacing the optimization set Q≤ with Q=, and this completes the proof.
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B. Proof of Corollary 1

Notice that for any (α, β, θ, θ1),

SD1(α, β, θ, θ1) ≥ 1 − h(D1 ∗ p) + (θ − θ1)G(α) + θ1G(β)

≥ 1 − h(D1 ∗ p) + θG(β′)

where β′ ∆= (θ−θ1)α+θ1β
θ , and the first inequality is due to the non-negativity of function G(u), while the second

inequality is due to its convexity. Furthermore, the constraint is satisfied with

D2 = (θ − θ1)α+ θ1β + (1 − θ)p = θβ′ + (1 − θ)p.

Let (α, β, θ, θ1) be the set of parameters achieving the minimum. Then by Theorem 8, we have

RHB(D1,D2) = SD1(α, β, θ, θ1) ≥ [1 − h(D1 ∗ p) + θG(β′)],

where D2 = θβ′ + (1 − θ)p. Moreover 0 ≤ β′ ≤ p, because both α and β are in this range, and β′ is the convex

combination of them. Thus

RHB(D1,D2) ≥ 1 − h(D1 ∗ p) + min
D2=θβ′+(1−θ)p

[θG(β′)],

with the minimization range 0 ≤ β′ ≤ p and 0 ≤ θ ≤ 1. Comparing it with the rate distortion function R∗
X|Y (D)

of (35) establishes the claim.

C. Proof of Corollary 2

In [4], it was proved that when D2 ≤ dc, R∗
X|Y (D2) = G(D2), and by Corollary 1, RHB(D1,D2) ≥ 1−h(D1 ∗

p) +G(D2) for this case. To show RHB(D1,D2) ≤ 1 − h(D1 ∗ p) +G(D2), consider the following test channel.

Let W2 be the output of a binary symmetric channel (BSC) with crossover probability D2 and input X , let W1

be the (cascade) output of a BSC with crossover probability η with input W2, such that η ∗D2 = D1; such an η

always exists because D2 ≤ D1. It can then be easily verified that

I(X;W1) + I(X;W2|W1, Y ) = 1 − h(D1 ∗ p) +G(D2) (102)

and the distortion is D1 and D2 by taking f1(W1) = W1 and f2(W1,W2, Y ) = W2. The rate distortion theorem

for this problem implies that RHB(D1,D2) ≤ 1 − h(D1 ∗ p) +G(D2), which completes the proof.

REFERENCES

[1] V. N. Koshelev, “Hierarchical coding of discrete sources,” Probl. Pered. Inform., vol. 16, no. 3, pp. 31–49, 1980.

[2] W. H. R. Equitz and T. M. Cover, “Successive refinement of information,” IEEE Trans. Information Theory, vol. 37, pp. 269–275, Mar.

1991.

[3] B. Rimoldi, “Successive refinement of information: Characterization of achievable rates,” IEEE Trans. Information Theory, vol. 40, pp. 253–

259, Jan. 1994.

[4] A. D. Wyner and J. Ziv, “The rate-distortion function for source coding with side information at the decoder,” IEEE Trans. Information

Theory, vol. 22, pp. 1–10, Jan. 1976.

DRAFT



32

[5] Y. Steinberg and N. Merhav, “On successive refinement for the Wyner-Ziv problem,” IEEE Trans. Information Theory, vol. 50, pp. 1636–

1654, Aug. 2004.

[6] C. Heegard and T. Berger, “Rate distortion when side information may be absent,” IEEE Trans. Information Theory, vol. 31, pp. 727–734,

Nov. 1985.

[7] A. Kaspi, “Rate-distortion when side-information may be present at the decoder,” IEEE Trans. Information Theory, vol. 40, pp. 2031–2034,

Nov. 1994.

[8] K. J. Kerpez, “The rate-distortion function of a binary symmetric source when side information may be absent,” IEEE Trans. Information

Theory, vol. 33, pp. 448–452, May. 1987.

[9] M. Fleming and M. Effros, “Rate-distortion with mixed types of side information,” in Proc. IEEE Symposium Information Theory, p. 144,

Jun.-Jul 2003.

[10] M. Fleming, On source coding for networks. PhD thesis, California Institute of Technology, 2004.

[11] Y. Steinberg and N. Merhav, “On hierarchical joint source-channel coding with degraded side information,” IEEE Trans. Information

Theory, vol. 52, pp. 886–903, Mar. 2006.

[12] M. Effros, “Distortion-rate bounds for fixed- and variable-rate multiresolution source codes,” IEEE Trans. Information Theory, vol. 45,

pp. 1887–1910, Sep. 1999.

[13] R. G. Gallager, Information theory and reliable communication. New York: John Wiley, 1968.

[14] A. D. Wyner, “The rate-distortion function for source coding with side information at the decoder II: general sources,” Inform. contr.,

vol. 38, pp. 60–80, 1978.

[15] T. M. Cover and J. A. Thomas, Elements of information theory. New York: Wiley, 1991.

[16] I. Csiszar and J. Korner, Information theory: coding theorems for discrete memoryless systems. Academic Press, New York, 1981.

[17] A. J. Grant, B. Rimoldi, R. L. Urbanke, and P. A. Whiting, “Rate-splitting multiple access for discrete memoryless channels,” IEEE Trans.

Information Theory, vol. 47, pp. 873–890, Mar. 2001.

DRAFT


