196 research outputs found

    Prediction of RNA pseudoknots by Monte Carlo simulations

    Full text link
    In this paper we consider the problem of RNA folding with pseudoknots. We use a graphical representation in which the secondary structures are described by planar diagrams. Pseudoknots are identified as non-planar diagrams. We analyze the non-planar topologies of RNA structures and propose a classification of RNA pseudoknots according to the minimal genus of the surface on which the RNA structure can be embedded. This classification provides a simple and natural way to tackle the problem of RNA folding prediction in presence of pseudoknots. Based on that approach, we describe a Monte Carlo algorithm for the prediction of pseudoknots in an RNA molecule.Comment: 22 pages, 14 figure

    Shapes of topological RNA structures

    Full text link
    A topological RNA structure is derived from a diagram and its shape is obtained by collapsing the stacks of the structure into single arcs and by removing any arcs of length one. Shapes contain key topological, information and for fixed topological genus there exist only finitely many such shapes. We shall express topological RNA structures as unicellular maps, i.e. graphs together with a cyclic ordering of their half-edges. In this paper we prove a bijection of shapes of topological RNA structures. We furthermore derive a linear time algorithm generating shapes of fixed topological genus. We derive explicit expressions for the coefficients of the generating polynomial of these shapes and the generating function of RNA structures of genus gg. Furthermore we outline how shapes can be used in order to extract essential information of RNA structure databases.Comment: 27 pages, 11 figures, 2 tables. arXiv admin note: text overlap with arXiv:1304.739

    Thermodynamic Analysis of Interacting Nucleic Acid Strands

    Get PDF
    Motivated by the analysis of natural and engineered DNA and RNA systems, we present the first algorithm for calculating the partition function of an unpseudoknotted complex of multiple interacting nucleic acid strands. This dynamic program is based on a rigorous extension of secondary structure models to the multistranded case, addressing representation and distinguishability issues that do not arise for single-stranded structures. We then derive the form of the partition function for a fixed volume containing a dilute solution of nucleic acid complexes. This expression can be evaluated explicitly for small numbers of strands, allowing the calculation of the equilibrium population distribution for each species of complex. Alternatively, for large systems (e.g., a test tube), we show that the unique complex concentrations corresponding to thermodynamic equilibrium can be obtained by solving a convex programming problem. Partition function and concentration information can then be used to calculate equilibrium base-pairing observables. The underlying physics and mathematical formulation of these problems lead to an interesting blend of approaches, including ideas from graph theory, group theory, dynamic programming, combinatorics, convex optimization, and Lagrange duality

    On the combinatorics of sparsification

    Get PDF
    Background: We study the sparsification of dynamic programming folding algorithms of RNA structures. Sparsification applies to the mfe-folding of RNA structures and can lead to a significant reduction of time complexity. Results: We analyze the sparsification of a particular decomposition rule, Λ∗\Lambda^*, that splits an interval for RNA secondary and pseudoknot structures of fixed topological genus. Essential for quantifying the sparsification is the size of its so called candidate set. We present a combinatorial framework which allows by means of probabilities of irreducible substructures to obtain the expected size of the set of Λ∗\Lambda^*-candidates. We compute these expectations for arc-based energy models via energy-filtered generating functions (GF) for RNA secondary structures as well as RNA pseudoknot structures. For RNA secondary structures we also consider a simplified loop-energy model. This combinatorial analysis is then compared to the expected number of Λ∗\Lambda^*-candidates obtained from folding mfe-structures. In case of the mfe-folding of RNA secondary structures with a simplified loop energy model our results imply that sparsification provides a reduction of time complexity by a constant factor of 91% (theory) versus a 96% reduction (experiment). For the "full" loop-energy model there is a reduction of 98% (experiment).Comment: 27 pages, 12 figure

    Topology of RNA-RNA interaction structures

    Get PDF
    The topological filtration of interacting RNA complexes is studied and the role is analyzed of certain diagrams called irreducible shadows, which form suitable building blocks for more general structures. We prove that for two interacting RNAs, called interaction structures, there exist for fixed genus only finitely many irreducible shadows. This implies that for fixed genus there are only finitely many classes of interaction structures. In particular the simplest case of genus zero already provides the formalism for certain types of structures that occur in nature and are not covered by other filtrations. This case of genus zero interaction structures is already of practical interest, is studied here in detail and found to be expressed by a multiple context-free grammar extending the usual one for RNA secondary structures. We show that in O(n6)O(n^6) time and O(n4)O(n^4) space complexity, this grammar for genus zero interaction structures provides not only minimum free energy solutions but also the complete partition function and base pairing probabilities.Comment: 40 pages 15 figure
    • …
    corecore