854 research outputs found

    Note on Integer Factoring Methods IV

    Get PDF
    This note continues the theoretical development of deterministic integer factorization algorithms based on systems of polynomials equations. The main result establishes a new deterministic time complexity bench mark in integer factorization.Comment: 20 Pages, New Versio

    Cryptography from tensor problems

    Get PDF
    We describe a new proposal for a trap-door one-way function. The new proposal belongs to the "multivariate quadratic" family but the trap-door is different from existing methods, and is simpler

    Notes on Small Private Key Attacks on Common Prime RSA

    Full text link
    We point out critical deficiencies in lattice-based cryptanalysis of common prime RSA presented in ``Remarks on the cryptanalysis of common prime RSA for IoT constrained low power devices'' [Information Sciences, 538 (2020) 54--68]. To rectify these flaws, we carefully scrutinize the relevant parameters involved in the analysis during solving a specific trivariate integer polynomial equation. Additionally, we offer a synthesized attack illustration of small private key attacks on common prime RSA.Comment: 15 pages, 1 figur

    A Unified Method for Private Exponent Attacks on RSA using Lattices

    Get PDF
    International audienceLet (n = pq, e = n^β) be an RSA public key with private exponent d = n^δ , where p and q are large primes of the same bit size. At Eurocrypt 96, Coppersmith presented a polynomial-time algorithm for finding small roots of univariate modular equations based on lattice reduction and then succussed to factorize the RSA modulus. Since then, a series of attacks on the key equation ed − kφ(n) = 1 of RSA have been presented. In this paper, we show that many of such attacks can be unified in a single attack using a new notion called Coppersmith's interval. We determine a Coppersmith's interval for a given RSA public key (n, e). The interval is valid for any variant of RSA, such as Multi-Prime RSA, that uses the key equation. Then we show that RSA is insecure if δ < β + 1/3 α − 1/3 √ (12αβ + 4α^2) provided that we have approximation p0 ≥ √ n of p with |p − p0| ≤ 1/2 n^α , α ≤ 1/2. The attack is an extension of Coppersmith's result

    PASCAL: Timing SCA Resistant Design and Verification Flow

    Full text link
    A large number of crypto accelerators are being deployed with the widespread adoption of IoT. It is vitally important that these accelerators and other security hardware IPs are provably secure. Security is an extra functional requirement and hence many security verification tools are not mature. We propose an approach/flow-PASCAL-that works on RTL designs and discovers potential Timing Side-Channel Attack(SCA) vulnerabilities in them. Based on information flow analysis, this is able to identify Timing Disparate Security Paths that could lead to information leakage. This flow also (automatically) eliminates the information leakage caused by the timing channel. The insertion of a lightweight Compensator Block as balancing or compliance FSM removes the timing channel with minimum modifications to the design with no impact on the clock cycle time or combinational delay of the critical path in the circuit.Comment: Total page number: 4 pages; Figures: 5 figures; conference: 25th IEEE International Symposium on On-Line Testing and Robust System Design 201
    • …
    corecore