19 research outputs found

    New Pairwise Spanners

    Get PDF
    Let G = (V,E) be an undirected unweighted graph on n vertices. A subgraph H of G is called an (all-pairs) purely additive spanner with stretch beta if for every (u,v) in V times V, mathsf{dist}_H(u,v) le mathsf{dist}_G(u,v) + beta. The problem of computing sparse spanners with small stretch beta is well-studied. Here we consider the following relaxation: we are given psubseteq V times V and we seek a sparse subgraph H where mathsf{dist}_H(u,v)le mathsf{dist}_G(u,v) + beta for each (u,v) in p. Such a subgraph is called a pairwise spanner with additive stretch beta and our goal is to construct such subgraphs that are sparser than all-pairs spanners with the same stretch. We show sparse pairwise spanners with additive stretch 4 and with additive stretch 6. We also consider the following special cases: p = S times V and p = S times T, where Ssubseteq V and Tsubseteq V, and show sparser pairwise spanners for these cases

    Reachability Preservers: New Extremal Bounds and Approximation Algorithms

    Full text link
    We abstract and study \emph{reachability preservers}, a graph-theoretic primitive that has been implicit in prior work on network design. Given a directed graph G=(V,E)G = (V, E) and a set of \emph{demand pairs} P⊆V×VP \subseteq V \times V, a reachability preserver is a sparse subgraph HH that preserves reachability between all demand pairs. Our first contribution is a series of extremal bounds on the size of reachability preservers. Our main result states that, for an nn-node graph and demand pairs of the form P⊆S×VP \subseteq S \times V for a small node subset SS, there is always a reachability preserver on O(n+n∣P∣∣S∣)O(n+\sqrt{n |P| |S|}) edges. We additionally give a lower bound construction demonstrating that this upper bound characterizes the settings in which O(n)O(n) size reachability preservers are generally possible, in a large range of parameters. The second contribution of this paper is a new connection between extremal graph sparsification results and classical Steiner Network Design problems. Surprisingly, prior to this work, the osmosis of techniques between these two fields had been superficial. This allows us to improve the state of the art approximation algorithms for the most basic Steiner-type problem in directed graphs from the O(n0.6+ε)O(n^{0.6+\varepsilon}) of Chlamatac, Dinitz, Kortsarz, and Laekhanukit (SODA'17) to O(n4/7+ε)O(n^{4/7+\varepsilon}).Comment: SODA '1

    Near Isometric Terminal Embeddings for Doubling Metrics

    Get PDF
    Given a metric space (X,d), a set of terminals K subseteq X, and a parameter t >= 1, we consider metric structures (e.g., spanners, distance oracles, embedding into normed spaces) that preserve distances for all pairs in K x X up to a factor of t, and have small size (e.g. number of edges for spanners, dimension for embeddings). While such terminal (aka source-wise) metric structures are known to exist in several settings, no terminal spanner or embedding with distortion close to 1, i.e., t=1+epsilon for some small 0<epsilon<1, is currently known. Here we devise such terminal metric structures for doubling metrics, and show that essentially any metric structure with distortion 1+epsilon and size s(|X|) has its terminal counterpart, with distortion 1+O(epsilon) and size s(|K|)+1. In particular, for any doubling metric on n points, a set of k=o(n) terminals, and constant 0<epsilon<1, there exists - A spanner with stretch 1+epsilon for pairs in K x X, with n+o(n) edges. - A labeling scheme with stretch 1+epsilon for pairs in K x X, with label size ~~ log k. - An embedding into l_infty^d with distortion 1+epsilon for pairs in K x X, where d=O(log k). Moreover, surprisingly, the last two results apply if only K is a doubling metric, while X can be arbitrary

    Tight Approximation Algorithms for Bichromatic Graph Diameter and Related Problems

    Get PDF
    Some of the most fundamental and well-studied graph parameters are the Diameter (the largest shortest paths distance) and Radius (the smallest distance for which a "center" node can reach all other nodes). The natural and important ST-variant considers two subsets S and T of the vertex set and lets the ST-diameter be the maximum distance between a node in S and a node in T, and the ST-radius be the minimum distance for a node of S to reach all nodes of T. The bichromatic variant is the special case in which S and T partition the vertex set. In this paper we present a comprehensive study of the approximability of ST and Bichromatic Diameter, Radius, and Eccentricities, and variants, in graphs with and without directions and weights. We give the first nontrivial approximation algorithms for most of these problems, including time/accuracy trade-off upper and lower bounds. We show that nearly all of our obtained bounds are tight under the Strong Exponential Time Hypothesis (SETH), or the related Hitting Set Hypothesis. For instance, for Bichromatic Diameter in undirected weighted graphs with m edges, we present an O~(m^{3/2}) time 5/3-approximation algorithm, and show that under SETH, neither the running time, nor the approximation factor can be significantly improved while keeping the other unchanged

    Multi-Level Weighted Additive Spanners

    Get PDF
    Given a graph G = (V, E), a subgraph H is an additive +β spanner if distH(u, v) ≤ distG(u, v) + β for all u, v ∈ V. A pairwise spanner is a spanner for which the above inequality is only required to hold for specific pairs P ⊆ V × V given on input; when the pairs have the structure P = S × S for some S ⊆ V, it is called a subsetwise spanner. Additive spanners in unweighted graphs have been studied extensively in the literature, but have only recently been generalized to weighted graphs. In this paper, we consider a multi-level version of the subsetwise additive spanner in weighted graphs motivated by multi-level network design and visualization, where the vertices in S possess varying level, priority, or quality of service (QoS) requirements. The goal is to compute a nested sequence of spanners with the minimum total number of edges. We first generalize the +2 subsetwise spanner of [Pettie 2008, Cygan et al., 2013] to the weighted setting. We experimentally measure the performance of this and several existing algorithms by [Ahmed et al., 2020] for weighted additive spanners, both in terms of runtime and sparsity of the output spanner, when applied as a subroutine to multi-level problem. We provide an experimental evaluation on graphs using several different random graph generators and show that these spanner algorithms typically achieve much better guarantees in terms of sparsity and additive error compared with the theoretical maximum. By analyzing our experimental results, we additionally developed a new technique of changing a certain initialization parameter which provides better spanners in practice at the expense of a small increase in running time. © Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Keaton Hamm, Stephen Kobourov, and Richard Spence; licensed under Creative Commons License CC-BY 4.0 19th International Symposium on Experimental Algorithms (SEA 2021).Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore