2,084 research outputs found

    An empirical evaluation of High-Level Synthesis languages and tools for database acceleration

    Get PDF
    High Level Synthesis (HLS) languages and tools are emerging as the most promising technique to make FPGAs more accessible to software developers. Nevertheless, picking the most suitable HLS for a certain class of algorithms depends on requirements such as area and throughput, as well as on programmer experience. In this paper, we explore the different trade-offs present when using a representative set of HLS tools in the context of Database Management Systems (DBMS) acceleration. More specifically, we conduct an empirical analysis of four representative frameworks (Bluespec SystemVerilog, Altera OpenCL, LegUp and Chisel) that we utilize to accelerate commonly-used database algorithms such as sorting, the median operator, and hash joins. Through our implementation experience and empirical results for database acceleration, we conclude that the selection of the most suitable HLS depends on a set of orthogonal characteristics, which we highlight for each HLS framework.Peer ReviewedPostprint (author’s final draft

    Neuro-memristive Circuits for Edge Computing: A review

    Full text link
    The volume, veracity, variability, and velocity of data produced from the ever-increasing network of sensors connected to Internet pose challenges for power management, scalability, and sustainability of cloud computing infrastructure. Increasing the data processing capability of edge computing devices at lower power requirements can reduce several overheads for cloud computing solutions. This paper provides the review of neuromorphic CMOS-memristive architectures that can be integrated into edge computing devices. We discuss why the neuromorphic architectures are useful for edge devices and show the advantages, drawbacks and open problems in the field of neuro-memristive circuits for edge computing

    System-level Prototyping with HyperTransport

    Get PDF
    The complexity of computer systems continues to increase. Emulation of proposed subsystems is one way to manage this growing complexity when evaluating the performance of proposed architectures. HyperTransport allows researchers to connect directly to microprocessors with FPGAs. This enables the emulation of novel memory hierarchies, non-volatile memory designs, coprocessors, and other architectural changes, combined with an existing system

    Supervised Learning in Spiking Neural Networks with Phase-Change Memory Synapses

    Full text link
    Spiking neural networks (SNN) are artificial computational models that have been inspired by the brain's ability to naturally encode and process information in the time domain. The added temporal dimension is believed to render them more computationally efficient than the conventional artificial neural networks, though their full computational capabilities are yet to be explored. Recently, computational memory architectures based on non-volatile memory crossbar arrays have shown great promise to implement parallel computations in artificial and spiking neural networks. In this work, we experimentally demonstrate for the first time, the feasibility to realize high-performance event-driven in-situ supervised learning systems using nanoscale and stochastic phase-change synapses. Our SNN is trained to recognize audio signals of alphabets encoded using spikes in the time domain and to generate spike trains at precise time instances to represent the pixel intensities of their corresponding images. Moreover, with a statistical model capturing the experimental behavior of the devices, we investigate architectural and systems-level solutions for improving the training and inference performance of our computational memory-based system. Combining the computational potential of supervised SNNs with the parallel compute power of computational memory, the work paves the way for next-generation of efficient brain-inspired systems

    Memory and information processing in neuromorphic systems

    Full text link
    A striking difference between brain-inspired neuromorphic processors and current von Neumann processors architectures is the way in which memory and processing is organized. As Information and Communication Technologies continue to address the need for increased computational power through the increase of cores within a digital processor, neuromorphic engineers and scientists can complement this need by building processor architectures where memory is distributed with the processing. In this paper we present a survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks. These architectures range from serial clocked implementations of multi-neuron systems to massively parallel asynchronous ones and from purely digital systems to mixed analog/digital systems which implement more biological-like models of neurons and synapses together with a suite of adaptation and learning mechanisms analogous to the ones found in biological nervous systems. We describe the advantages of the different approaches being pursued and present the challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems.Comment: Submitted to Proceedings of IEEE, review of recently proposed neuromorphic computing platforms and system
    corecore