
System-level Prototyping with HyperTransport

Myles Watson and Kelly Flanagan

Computer Science Department

Brigham Young University

Provo, Utah, USA

myles@byu.edu kelly@cs.byu.edu

Abstract— The complexity of computer systems continues to

increase. Emulation of proposed subsystems is one way to

manage this growing complexity when evaluating the

performance of proposed architectures. HyperTransport

allows researchers to connect directly to microprocessors with

FPGAs. This enables the emulation of novel memory

hierarchies, non-volatile memory designs, coprocessors, and

other architectural changes, combined with an existing system.

Keywords-HyperTransport; FPGA; prototype; emulation;

I. INTRODUCTION

In accordance with Moore’s Law, the number of

transistors available to chip designers has continued to

double every 18 months. For many years, this transistor

scaling also enabled increasing central processing unit

(CPU) frequencies. Although CPU frequencies and

performance increased rapidly, memory and I/O

performance increased much more slowly. This disparity

increased the importance of I/O and memory performance in

computer systems design [1].

In the last few years, power consumption and cooling
have caused CPU manufacturers to shift the focus from

frequency scaling to scaling the number of processor cores

per die [2]. This has exacerbated the pressure on, and the

importance of, the memory and I/O subsystems [3].

The increase in importance of memory and I/O

subsystems increases the need for understanding system-

level design changes, and their impact on performance.

Unfortunately, system-level simulation is error prone and

costly. One alternative is to emulate part of the system to be

studied using field-programmable gate arrays (FPGAs).

Connecting the FPGAs to commercial CPUs enables the

study of a portion of the I/O subsystem or memory
hierarchy, while eliminating the need to faithfully model the

CPUs and their internal components.

Designing and implementing an emulation system from

scratch would be a costly endeavor, however in-socket

accelerators are commercially available at a much lower

cost [4]. In-socket accelerators are FPGA boards designed to

fit into a CPU socket, and are marketed as flexible

application accelerators. They provide low-latency and low-

power computational resources for applications such as

bioinformatics, data-mining, real-time financial analysis,

and oil and gas exploration.
This work describes how an XtremeData XD1000

FPGA board in an AMD Opteron socket can serve as part of

a flexible emulation platform. Since the XD1000 tightly

couples an Altera Stratix II FPGA with the CPU and other

system resources, such as the DRAM sockets on the
motherboard, this platform is useful for exploring the design

of I/O subsystems and memory hierarchies. Two emulation

platforms incorporating the XD1000 are described, each of

which is useful for emulating different system designs. Both

of these platforms have been implemented, and preliminary

performance results in terms of latency and bandwidth for

reads and writes are presented for one of the systems.

The remainder of the paper is divided into sections.

Section II presents the design of two emulation platforms

using the XD1000, along with some of the implementation

concerns. Section III describes three target application areas.
Section IV presents preliminary performance measurements

and discusses the importance of relative performance as an

analysis tool. Section V discusses related work. Section VI

is the conclusion.

II. SYSTEM DESIGN

An important characteristic of an emulation system is

the connection point to the system, which determines the

latency and bandwidth of accesses to the emulated device.

Two possible locations are a peripheral bus (e.g., PCIe) and

the system bus (e.g., HyperTransport or QuickPath

Interconnect).
Connecting the emulation platform to a peripheral bus

is a flexible and relatively low-cost way to emulate I/O

devices and interfaces. Often, an application-specific

integrated circuit (ASIC) can be used to connect to the bus,

allowing the designer to use the FPGA entirely for the

emulated device.

Using an FPGA to connect directly to the processor via

the system bus allows lower-latency access to the device. In

general, each bus or device through which memory accesses

must pass increases the access latency. The option of using

coherent (cache-coherent) memory is another benefit of

connecting to the system bus.
Coherent memory provides more flexibility in the

memory organizations that can be studied, since it can be

cached and paged by the microprocessor. From the

perspective of the operating system (OS) and applications,

this makes it indistinguishable from DRAM connected to a

remote processor. Coherent memory allows the study of

caching and buffering schemes.

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heidelberger Dokumentenserver

https://core.ac.uk/display/32582052?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1. XD1000 in a cave configuration.

Figure 2. XD1000 in an I/O host configuration.

A. Coherent HyperTransport

The coherent HyperTransport (cHT) specification is a

superset of the HyperTransport (HT) specification. The HT
specification is open, but the cHT specification is only

available under NDA with AMD [5,6]. The University of

Heidelberg’s Center Of Excellence for HyperTransport

(CoEHT) has developed HT and cHT cores which can be

deployed in FPGAs to connect to AMD Opteron processors

through processor-socket interposers (e.g, the XtremeData

XD1000) or HyperTransport Extension (HTX) boards (e.g.,

the CoEHT HTX board [7]).

B. Architectural Variations

Opterons and XD1000 modules have three HT links,

allowing some flexibility in the configuration of a system.

The cHT core adds another option to each configuration.

Figures 1 and 2 show two of the configurations available

using one or two links. In each case, the link between the

Opteron and the XD1000 can be HT or cHT, yielding two

additional configurations.

In this work, the XD1000 module is deployed in two
Tyan motherboards, the Thunder K8WE (S2895) and

Thunder K8SE (S2892). These motherboards were chosen

because they are very similar and are supported by coreboot

(open-source firmware) [8]. Using coreboot with BIOS

emulation routines allows unmodified OSs to be booted,

which eases application and driver development [9]. The

S2895 has two chipsets, which allows the XD1000 to

function as a coherent I/O host. Both configurations have

four 1GB DDR DIMMs directly attached to the XD1000.

If main memory is part of the emulated system, cHT is

chosen as the connection between the XD1000 and the

Opteron. The DRAM connected to the Opteron can then be
removed from the system, requiring all memory accesses to

be serviced by the XD1000 and the DRAM connected to it.

If more than 4 GB of emulated storage is required, the I/O

host can connect to I/O devices (PCIe) on the motherboard

through a second HT link.

In the configurations shown in Figure 2, where there are

multiple HT links, care must be taken to avoid deadlock. HT

specifies that no transactions should depend on the

completion of other transactions, and transactions should

not create new transactions. These guarantees are easily

broken by a system which changes the integration level of
components, so any new packets must be isolated from the

rest of the system. The method of choice is to separate the

traffic controlling the I/O devices from the read and write

requests from the Opteron. The HT specification requires all

packets from devices to traverse the complete chain to the

host. This allows the packets to be routed based on their

address by the I/O host. In this work, packets are filtered

based on their source and destination to make sure that

traffic that is part of the emulated system does not reach the

CPU.

The XD1000 HT links can run at 200 or 400 MHz

using the serializer/deserializer (SERDES) hardware in the
FPGA, or at 200 MHz when implemented with DDR

registers. When the XD1000 is used as an I/O host on the

S2895, at least one of the links is limited to 200 MHz. This

is due to a combination of the HT link connecting the

XD1000 to the chipset, and limited FPGA resources. Since

the links are 16 bits wide and HT is DDR, this provides 800

MB/s of theoretical peak bandwidth in each direction.

C. Firmware Modifications

In order to use the XD1000 to emulate multiple system

configurations, the firmware which initializes the system

must be modified. The modifications can be grouped into

three types: XD1000 initialization, address space allocation,

and resource reporting. The modifications are more

extensive for the I/O host than for the cave.

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

2

When used as a cave, the XD1000 initialization is

minimal. It consists of an extra hard reset if the HT link is

not active. This is necessary to allow the clock generation

circuitry of the FPGA sufficient time to stabilize. The

resource allocation process must be circumvented for the 4

GB of DRAM, which is allocated above main memory. The
Advanced Configuration and Power Interface (ACPI) tables

must then be modified so that the XD1000’s bus is visible

to the OS.

When the XD1000 is an I/O host, it appears to software

to be an Opteron processor. It must be programmed with the

correct routing values and included in the routing table so

that memory accesses reach it correctly. Since the DRAM

controller is implemented in the FPGA fabric, the DRAM

initialization code needs to be skipped as well. The size of

the address space occupied by the emulated storage must be

specified, and some ACPI tables must be modified in order

for the memory to appear to be attached to node 0. Since
there are no processor cores, the code which initializes the

Opteron processor cores must be skipped so that the cores

appear to be disabled. As a final step, the devices connected

to the HT link of the I/O controller, which will be part of the

emulated system, must be initialized and hidden from the

OS.

D. Bandwidth and Write Buffering

The basic unit of transfer in the HyperTransport

protocol is the thirty-two bit (four-byte) word. The most

efficient transfers (with the lowest overhead) are transfers of

64 bytes. Transfer sizes depend on the Opteron’s memory

type and page attributes. When the address space is write-

back, reads transfer 64 bytes at a time, but writes are

performed according to the data size of the store instruction.

When the address space is write-combining, the opposite is

true.

In order to maximize bandwidth in both directions, the
XD1000 example application makes use of DMA engines in

the FPGA to transfer data to and from the host memory.

This works well when the emulated device is accessed only

through a driver, which can set up the transfers. When any

size of transfer may be used, this asymmetric performance

must be taken into account.

Even with 64-byte transfers, write buffering must be

used, since the DRAM controller has a width of 128 bytes.

This means that 128 bytes must be read from DRAM before

64 bytes can be written. Much of the complexity involved in

creating an application with HyperTransport is a product of
the different widths. The 32-bit HT bus protocol is

converted by the core to 64-bit data for processing on the

FPGA, since FPGAs make better use of wide widths than

high clock rates. These data words must be assembled for

the DRAM controller. In order to manage this complexity,

all writes to RAM are handled by the write buffer, as are

any reads that are smaller than 64-bytes.

III. APPLICATIONS

Many areas of system design can be explored using
emulation. Three of the areas that seem most promising are:

adding non-volatile memory (NVRAM), adding an

application-specific coprocessor (or changing the way one is

integrated with the system), and changing the memory

hierarchy.

A. Non-volatile Memories

Nonvolatile memory technology is advancing. Flash

memory is being used as a disk replacement in performance-

critical applications. Other technologies, such as phase-

change memory (PCM) and spin-torque transfer memory

(STTM), are also being developed. Their densities are

increasing, and they may be included in future computing

systems.

These technologies differ from the DRAM in several

important ways, which will influence their integration into

computer systems. The two most obvious differences are

asymmetric access times for writes and reads, and the need

for wear leveling. Both of these factors will influence the
design of memory controllers and the resulting performance

of applications.

Building prototype systems is prohibitively expensive

for exploring the design space, and cannot be done before

devices are produced. In order to explore the design space,

tools must be developed that will allow accurate

performance comparisons for different organizations, block

sizes, and wear-leveling and buffering algorithms.

The emulation system of Figure 1 can be used to

explore design choices and the interactions of applications

with up to 4 GB of NVRAM connected to the system.
Programmable delays can be added to the DRAM controller

[10] and/or the write buffer in order to more accurately

model the access latencies of each technology.

B. Coprocessors

One way to increase the time and power efficiency of

computation is to use application-specific processors. Many
applications have abundant available parallelism. This

parallelism can be efficiently exploited by architectures

combining many simple, low-power processing elements.

General-purpose computing on graphics processing units

(GPGPU) is an example of this. The connections between

the GPU, the CPU, and memory affect the performance of

the application. This could affect how the work is divided

among processing units.

The same architectural questions can be explored for

general graphics processing. AMD’s Fusion architecture

more tightly couples the GPU and the CPU in order to
achieve higher performance, lower power consumption, or

both. An emulated system can be used to explore the design

space and performance benefits of such a system before it is

built.

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

3

C. Memory Hierarchies

The increasing gap between main memory and CPU

speed has increased the importance of the memory hierarchy

in system performance. Much of the area on recent CPU

dies is dedicated to caches. There is a large design space to

be explored, and its complexity is increasing with the

number of processor cores. Structures such as coherence

directories are good candidates for emulation, since they can

be implemented with the RAM resources of the FPGA.

One extension to the memory hierarchy which can be

explored using emulation is a hardware single-level store,

which moves control of swapping pages of memory from
the OS into hardware. Swapping is a feature of virtual

memory when the virtual memory space is larger than

physical RAM. Memory pages are swapped when pages of

data are transferred to and from the secondary store to

maintain the illusion of large memory space. If a page is

chosen for replacement that will be used again soon, its next

access will cause another swap. Since secondary storage is

much slower than RAM, minimizing swapping is essential

to performance. Some related features, such as file caching,

can also be controlled by the same hardware, since the files

reside in the secondary store and get moved to RAM for
faster access.

Hardware paging support is interesting because there is

limited information available to the OS about page usage.

Usage bits are only updated during page table walks, which

occur on TLB misses. In order for an OS to collect more

usage information, it must invalidate TLB entries to cause

misses, which is expensive. With more information, paging

algorithms make better replacement decisions, increasing

performance [11]. A hardware paging implementation

would be aware of all memory accesses that miss the last

level of cache, and therefore have more information on

which to base page replacement decisions.
Moving paging support out of the OS is not a new idea.

The IBM AS/400 and its predecessor, the IBM System/38,

implement paging in virtual machines. This simplifies

software development, since from the perspective of the OS

and applications, memory is flat and uniform [12]. A virtual

machine implementation of paging suffers the same

performance penalties as other software implementations,

due to limited usage information,.

IV. PERFORMANCE

Performance measurements and comparisons are two of

the most compelling reasons to emulate modifications to
computer systems. Although the most straightforward way

to measure system performance is by measuring wall clock

time, it is not the most helpful metric for comparing

emulated systems. Although the FPGAs used for emulation

continue to improve in speed, they are not as fast as a final

implementation.

A. Preliminary Performance Measurements

In order to understand the performance characteristics

of a system, simple latency and bandwidth measurements

are taken. The system shown in Figure 1 is booted into

Linux, and a modified device driver based on the example

XD1000 driver is loaded. A simple application is then run,

which calls mmap to obtain a pointer to the 4GB of memory

on the XD1000. Once the program has a pointer, it is

straightforward to write timing loops which measure the

average latency and bandwidth of memory accesses. The

measured latencies can be verified using Altera SignalTap
to view the HT requests.

The latency for each read or write targeting the DRAM

is around 850 ns, with the write buffer implemented, but no

workload-specific optimizations. This yields varying

bandwidths depending on the transaction types and sizes, as

shown in Table 1. Because the write buffer is organized as a

cache, each write to a new line causes a line fill from the

DRAM, and possibly a write back for dirty data. An obvious

performance optimization is to bypass the write buffer when

multiple consecutive writes are received, and write a full

128 bytes directly to DRAM. Avoiding the write buffer in
this way would substantially increase the write bandwidth.

Note that read bandwidth is significantly lower than write

bandwidth because each read must complete before software

can issue another read; writes have no such restriction.

Running two threads nearly doubles the read bandwidth

because the two processor cores can issue reads in parallel,

but it has no effect on write bandwidth.

B. Relative Performance Comparisons

Using absolute performance numbers with emulated

architectures can be misleading. The solution is to use

relative performance comparisons. Some of the factors that

make relative performance comparisons more appropriate

than using absolute performance include: the lower

frequency of an FPGA implementation of HyperTransport,

the fact that the emulated prototype may not be fully

optimized, and even restrictions with the NDA in publishing

performance numbers for the coherent core.

In order to compare the performance of multiple non-
volatile memory technologies and their controllers, the path

TABLE II. READ AND WRITE BANDWIDTH MEASUREMENTS.

Transaction Type Bandwidth

32-bit writes 60 MB/s

64-bit writes 90 MB/s

64-byte writes (write-combining) 120 MB/s

32-bit reads 5.5 MB/s

32-bit reads (two threads) 11 MB/s

64-byte reads (cacheable 32-bit) 50 MB/s

64-byte reads (two threads) 92 MB/s

TABLE I. READ AND WRITE BANDWIDTH MEASUREMENTS.

Transaction Type Bandwidth (MB/s)

32-bit writes 60

64-bit writes 90

64-byte writes (write-combining) 120

32-bit reads 5.5

32-bit reads (two threads) 11

64-byte reads (cacheable 32-bit) 50

64-byte reads (two threads) 92

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

4

for each access should be equivalent. This means that a

comparison between the delayed RAM on the XD1000 and

the RAM attached to the host Opteron would be much less

informative than a comparison between two delay settings

on the XD1000.

For the case of an emulated single-level store, the only
DRAM in the system is attached to the XD1000, and all

requests must traverse the same path. The difference being

measured can then be attributed to the difference in the

paging algorithm, and the information available to it. The

latency of a memory access in this scenario is the sum of the

latencies due to: the HT link, the write buffer access, the

DRAM access, and in the case of a miss, a page transfer

from the backing store to DRAM.

When making the baseline measurements, the Opteron

is initialized to access 4 GB of RAM with the XD1000 as

the only memory controller. Memory needs beyond 4 GB

must be supplied by OS-controlled paging to the secondary
storage. The baseline is then compared to the same

configuration, but hardware paging is enabled and the

XD1000 is initialized as a memory controller with up to 1

TB of storage addressable as RAM. The 1 TB limit is a hard

limit dictated by the 40 physical address bits available to the

processors. Newer Opterons have 48 physical address bits,

expanding their addressing capabilities to 256 TB.

V. RELATED WORK

There are many system-level simulators, but there are

relatively few systems which add emulation to an existing

system using FPGAs. In this section, a case is presented for
using emulation in place of full-system simulation. This

analysis is followed by a discussion of three related

emulation systems, and two FPGA prototype systems that

use HT to enable low-latency cluster interconnects.

A. Emulation vs. Simulation

Several factors make system-level simulation time
consuming, expensive, and error-prone. These include the

asynchronous interactions among multiple devices, the

closed nature of many CPUs, the complexity of these CPUs

and their interconnects, and the increasing sizes of caching

structures and translation look-aside buffers (TLBs).

Since modern computer systems incorporate many

diverse components, modeling their interactions faithfully

can be difficult. Computer systems include devices ranging

from PCI Express (PCIe) graphics cards to hard drives to

serial ports, with widely varying performance characteristics

and latencies. Modeling the system at a sufficient level of
detail to accurately reflect system performance is a

challenge.

Modern CPUs have complex performance

characteristics, which can be difficult to model [13].

Although some high-level details of CPU architectures are

available, many of the details needed for accurately

simulating their performance are not. Even if all the design

parameters are available, the complexity of faithful

modeling slows simulations significantly, and it is difficult

to assure the correctness of the final model. This also

applies to the interconnections among CPU cores and the

connections to other subsystems. Multi-core architectures

exacerbate this problem.

As storage structures such as caches and TLBs increase
in size, the amount of simulated run time needed in order to

characterize their performance increases. Measuring the

benefit of another level of cache, for example, will require

the benchmark to generate many misses in the previous

levels.

Emulation is a promising way to reduce the complexity

involved in understanding the effects on performance of

modifications to an existing system. FPGAs combine

programmable logic and I/O interfaces, and some contain

implementations of simple microprocessors. This makes

them suited to implement a wide variety of functions for

experimentation. Their performance is limited in terms of
maximum clock frequency, but many times that can be

mitigated by the high degree of fine-grained parallelism

available in them.

Emulated subsystems implemented in an FPGA run fast

enough to allow multiple benchmark runs. These multiple

runs add statistical significance to performance

measurements of the emulated systems and minimize the

effect of performance variability of the other system

components.

B. Emulation Systems

Three related FPGA emulation systems are Flexible

Architecture Research Machine (FARM) [14], Research

Accelerator for Multiple Processors (RAMP) [13, 15], and

High-performance Advanced Storage Technology Emulator

(HASTE) [10].

FARM is similar to this work, in that it modifies and

repurposes an existing FPGA and Opteron system in order
to explore system architecture. FARM differs from using an

in-socket accelerator because the original system is much

more expensive, and the FPGAs are not directly connected

to the DDR or chipset on the motherboard.

RAMP is a collaborative effort by a number of

researchers to enable comparable architectural research and

bring down the costs associated with FPGA emulation,

specifically for many simple cores and their interconnects.

In order to achieve this goal, RAMP specifies FPGA boards,

and encourages the sharing and reuse of design components

for the FPGA designs. RAMP focuses on the challenges of
multi-core architectures and the software which runs on

them.

HASTE is a system constructed by UCSD to evaluate

NVRAM technologies in supercomputing applications.

HASTE connects DRAM with an FPGA controller on a

PCIe card, and is compared with the system DRAM and

solid-state disks to explore the performance of storage

devices built from emerging NVRAM technologies.

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

5

C. Low-Latency Cluster Interconnects

Two systems which use FPGAs with HT to prototype

low-latency cluster interconnects are the Virtualized Engine

for Low Overhead (VELO) [16], and the Hyper Parallel

Processing (HPP) architecture [17].

VELO is an implementation of a network engine using

an HTX card. The resulting network exhibits latencies of

just over 1 μs, including routing.

 HPP connects multiple motherboards with an HT

backplane and a switch implemented with an FPGA. The

HPP prototype demonstrates low-latency, high-bandwidth

connections between motherboards in a prototype high-
performance, low-cost cluster.

Both VELO and HPP are specifically designed to

prototype connections between systems, whereas systems

using in-socket emulators are better suited for emulating and

prototyping modifications to parts of a single system.

VI. CONCLUSION

This work demonstrated how HT and FPGAs can be

used in commodity systems to emulate and evaluate the

performance of proposed system modifications. The ability

of the XD1000 to connect directly to the motherboard HT

links was shown to allow the exploration of many system
configurations. Two of these configurations were presented,

along with preliminary performance results from one of

them. These emulation systems were presented as a viable

way to evaluate new technologies such as NVRAM, and the

many ways that they can be incorporated into computer

systems.

ACKNOWLEDGMENTS

Thanks to Heiner Litz, Maya Gokhale, and the

anonymous reviewers for their comments and helpful

suggestions.

REFERENCES

[1] W. A. Wulf and S. A. McKee. 1995. “Hitting the memory wall:
implications of the obvious,” SIGARCH Comput. Archit. News 23, 1

(March 1995), 20-24.

[2] K. Asanović, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J.

Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D.
Wessel, and K. Yelick. “A view of the parallel computing

landscape,” Commun. ACM 52, 10 (October 2009), 56-67.

[3] P. Conway and B. Hughes. “The AMD Opteron northbridge

architecture,” IEEE Micro 27, 2 (March 2007), 10-21.

[4] XtremeData web site, http://www.xtremedata.com/.

[5] HyperTransport Center of Excellence web site, http://ra.ziti.uni-

heidelberg.de/coeht/

[6] HyperTransport Consortium web site,
http://www.hypertransport.org/.

[7] H. Fröning, M. Nüssle, D. Slogsnat, H. Litz, U. Brüning, “The HTX-

board: a rapid prototyping station,” Proc. Of 3rd annual FPGAworld
Conference, Nov. 16, 2006, Stockholm, Sweden.

[8] Coreboot web site, http://www.coreboot.org/.

[9] A. Agnew, A. Sulmicki, R. Minnich, W. A. Arbaugh: “Flexibility in

ROM: a stackable open source BIOS,” USENIX Annual Technical
Conference, FREENIX Track 2003: 115-124.

[10] A. M. Caulfield, J. Coburn, T. I. Mollov, A. De, A. Akel, J. He, A.
Jagatheesan, R. K. Gupta, A. Snavely, and S. Swanson,

“Understanding the impact of emerging non-volatile memories on
high-performance, IO-intensive computing,” SC'10: Proceedings of

the Conference on High Performance Computing Networking,
Storage and Analysis, New Orleans, Louisiana, Nov. 2010.

[11] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and S.

Kumar. “Dynamic tracking of page miss ratio curve for memory
management,” In Proceedings of the 11th international conference on

Architectural support for programming languages and operating
systems (ASPLOS-XI). ACM, New York, NY, USA, 177-188.

[12] F. G. Soltis, Inside the AS/400, second ed. Duke Communications,

Loveland, CO, 1997.

[13] J. Wawrzynek, D. Patterson, M. Oskin, S. Lu, C. Kozyrakis, J. C.
Hoe, D. Chiou, K. Asanović. “RAMP: Research Accelerator for

Multiple Processors,” IEEE Micro, 27(2):46–57, 2007.

[14] T. Oguntebi, S. Hong, J. Casper, N. Bronson, C. Kozyrakis, K.
Olukotun, “FARM: a prototyping environment for tightly-coupled,

heterogeneous architectures,” FCCM '10: The 18th Annual
International IEEE Symposium on Field-Programmable Custom

Computing Machines, May 2010.

[15] Z. Tan, A. Waterman, R. Avizienis, Y. Lee, H. Cook, D. Patterson,
and K. Asanović, “RAMP gold: an FPGA-based architecture

simulator for multiprocessors,” In Proceedings of the 47th Design
Automation Conference (DAC '10). ACM, New York, NY, USA,

463-468.

[16] M. Nüssle, B. Geib, H. Fröning, and U. Brüning, “An FPGA-based

custom high performance interconnection network,” In Proceedings
of the 2009 International Conference on Reconfigurable Computing

and FPGAs (RECONFIG '09). IEEE Computer Society, Washington,
DC, USA, 113-118.

[17] X. Yang, F. Chen, H. Cheng, N. Sun, “A HyperTransport-based

personal parallel computer,” Cluster Computing, 2008 IEEE
International Conference on, pp.126-132, Sept. 2008.

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

6

