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Abstract— The complexity of computer systems continues to 

increase. Emulation of proposed subsystems is one way to 

manage this growing complexity when evaluating the 

performance of proposed architectures. HyperTransport 

allows researchers to connect directly to microprocessors with 

FPGAs. This enables the emulation of novel memory 

hierarchies, non-volatile memory designs, coprocessors, and 

other architectural changes, combined with an existing system. 
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I.  INTRODUCTION 

In accordance with Moore’s Law, the number of 

transistors available to chip designers has continued to 

double every 18 months. For many years, this transistor 

scaling also enabled increasing central processing unit 

(CPU) frequencies. Although CPU frequencies and 

performance increased rapidly, memory and I/O 

performance increased much more slowly. This disparity 

increased the importance of I/O and memory performance in 

computer systems design [1]. 

In the last few years, power consumption and cooling 
have caused CPU manufacturers to shift the focus from 

frequency scaling to scaling the number of processor cores 

per die [2]. This has exacerbated the pressure on, and the 

importance of, the memory and I/O subsystems [3]. 

The increase in importance of memory and I/O 

subsystems increases the need for understanding system-

level design changes, and their impact on performance. 

Unfortunately, system-level simulation is error prone and 

costly. One alternative is to emulate part of the system to be 

studied using field-programmable gate arrays (FPGAs). 

Connecting the FPGAs to commercial CPUs enables the 

study of a portion of the I/O subsystem or memory 
hierarchy, while eliminating the need to faithfully model the 

CPUs and their internal components. 

Designing and implementing an emulation system from 

scratch would be a costly endeavor, however in-socket 

accelerators are commercially available at a much lower 

cost [4]. In-socket accelerators are FPGA boards designed to 

fit into a CPU socket, and are marketed as flexible 

application accelerators. They provide low-latency and low-

power computational resources for applications such as 

bioinformatics, data-mining, real-time financial analysis, 

and oil and gas exploration. 
This work describes how an XtremeData XD1000 

FPGA board in an AMD Opteron socket can serve as part of 

a flexible emulation platform. Since the XD1000 tightly 

couples an Altera Stratix II FPGA with the CPU and other 

system resources, such as the DRAM sockets on the 
motherboard, this platform is useful for exploring the design 

of I/O subsystems and memory hierarchies. Two emulation 

platforms incorporating the XD1000 are described, each of 

which is useful for emulating different system designs. Both 

of these platforms have been implemented, and preliminary 

performance results in terms of latency and bandwidth for 

reads and writes are presented for one of the systems. 

The remainder of the paper is divided into sections. 

Section II presents the design of two emulation platforms 

using the XD1000, along with some of the implementation 

concerns. Section III describes three target application areas. 
Section IV presents preliminary performance measurements 

and discusses the importance of relative performance as an 

analysis tool. Section V discusses related work. Section VI 

is the conclusion. 

II. SYSTEM DESIGN 

An important characteristic of an emulation system is 

the connection point to the system, which determines the 

latency and bandwidth of accesses to the emulated device. 

Two possible locations are a peripheral bus (e.g., PCIe) and 

the system bus (e.g., HyperTransport or QuickPath 

Interconnect).  
Connecting the emulation platform to a peripheral bus 

is a flexible and relatively low-cost way to emulate I/O 

devices and interfaces. Often, an application-specific 

integrated circuit (ASIC) can be used to connect to the bus, 

allowing the designer to use the FPGA entirely for the 

emulated device. 

Using an FPGA to connect directly to the processor via 

the system bus allows lower-latency access to the device. In 

general, each bus or device through which memory accesses 

must pass increases the access latency. The option of using 

coherent (cache-coherent) memory is another benefit of 

connecting to the system bus. 
Coherent memory provides more flexibility in the 

memory organizations that can be studied, since it can be 

cached and paged by the microprocessor. From the 

perspective of the operating system (OS) and applications, 

this makes it indistinguishable from DRAM connected to a 

remote processor. Coherent memory allows the study of 

caching and buffering schemes. 
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Figure 1.  XD1000 in a cave configuration. 

 

 
 

Figure 2.   XD1000 in an I/O host configuration. 

A. Coherent HyperTransport 

The coherent HyperTransport (cHT) specification is a 

superset of the HyperTransport (HT) specification. The HT 
specification is open, but the cHT specification is only 

available under NDA with AMD [5,6]. The University of 

Heidelberg’s Center Of Excellence for HyperTransport 

(CoEHT) has developed HT and cHT cores which can be 

deployed in FPGAs to connect to AMD Opteron processors 

through processor-socket interposers (e.g, the XtremeData 

XD1000) or HyperTransport Extension (HTX) boards (e.g., 

the CoEHT HTX board [7]). 

B. Architectural Variations 

Opterons and XD1000 modules have three HT links, 

allowing some flexibility in the configuration of a system. 

The cHT core adds another option to each configuration. 

Figures 1 and 2 show two of the configurations available 

using one or two links. In each case, the link between the 

Opteron and the XD1000 can be HT or cHT, yielding two 

additional configurations. 

In this work, the XD1000 module is deployed in two 
Tyan motherboards, the Thunder K8WE (S2895) and 

Thunder K8SE (S2892). These motherboards were chosen 

because they are very similar and are supported by coreboot 

(open-source firmware) [8]. Using coreboot with BIOS 

emulation routines allows unmodified OSs to be booted, 

which eases application and driver development [9]. The 

S2895 has two chipsets, which allows the XD1000 to 

function as a coherent I/O host. Both configurations have 

four 1GB DDR DIMMs directly attached to the XD1000. 

If main memory is part of the emulated system, cHT is 

chosen as the connection between the XD1000 and the 

Opteron. The DRAM connected to the Opteron can then be 
removed from the system, requiring all memory accesses to 

be serviced by the XD1000 and the DRAM connected to it. 

If more than 4 GB of emulated storage is required, the I/O 

host can connect to I/O devices (PCIe) on the motherboard 

through a second HT link. 

In the configurations shown in Figure 2, where there are 

multiple HT links, care must be taken to avoid deadlock. HT 

specifies that no transactions should depend on the 

completion of other transactions, and transactions should 

not create new transactions. These guarantees are easily 

broken by a system which changes the integration level of 
components, so any new packets must be isolated from the 

rest of the system. The method of choice is to separate the 

traffic controlling the I/O devices from the read and write 

requests from the Opteron. The HT specification requires all 

packets from devices to traverse the complete chain to the 

host. This allows the packets to be routed based on their 

address by the I/O host. In this work, packets are filtered 

based on their source and destination to make sure that 

traffic that is part of the emulated system does not reach the 

CPU.  

The XD1000 HT links can run at 200 or 400 MHz 

using the serializer/deserializer (SERDES) hardware in the 
FPGA, or at 200 MHz when implemented with DDR 

registers. When the XD1000 is used as an I/O host on the 

S2895, at least one of the links is limited to 200 MHz. This 

is due to a combination of the HT link connecting the 

XD1000 to the chipset, and limited FPGA resources. Since 

the links are 16 bits wide and HT is DDR, this provides 800 

MB/s of theoretical peak bandwidth in each direction.  

C.  Firmware Modifications 

In order to use the XD1000 to emulate multiple system 

configurations, the firmware which initializes the system 

must be modified. The modifications can be grouped into 

three types: XD1000 initialization, address space allocation, 

and resource reporting. The modifications are more 

extensive for the I/O host than for the cave. 
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When used as a cave, the XD1000 initialization is 

minimal. It consists of an extra hard reset if the HT link is 

not active. This is necessary to allow the clock generation 

circuitry of the FPGA sufficient time to stabilize. The 

resource allocation process must be circumvented for the 4 

GB of DRAM, which is allocated above main memory. The 
Advanced Configuration and Power Interface (ACPI) tables 

must then be modified so that the XD1000’s bus  is visible 

to the OS. 

When the XD1000 is an I/O host, it appears to software 

to be an Opteron processor. It must be programmed with the 

correct routing values and included in the routing table so 

that memory accesses reach it correctly. Since the DRAM 

controller is implemented in the FPGA fabric, the DRAM 

initialization code needs to be skipped as well. The size of 

the address space occupied by the emulated storage must be 

specified, and some ACPI tables must be modified in order 

for the memory to appear to be attached to node 0. Since 
there are no processor cores, the code which initializes the 

Opteron processor cores must be skipped so that the cores 

appear to be disabled. As a final step, the devices connected 

to the HT link of the I/O controller, which will be part of the 

emulated system, must be initialized and hidden from the 

OS. 

D. Bandwidth and Write Buffering 

The basic unit of transfer in the HyperTransport 

protocol is the thirty-two bit (four-byte) word. The most 

efficient transfers (with the lowest overhead) are transfers of 

64 bytes. Transfer sizes depend on the Opteron’s memory 

type and page attributes. When the address space is write-

back, reads transfer 64 bytes at a time, but writes are 

performed according to the data size of the store instruction. 

When the address space is write-combining, the opposite is 

true. 

In order to maximize bandwidth in both directions, the 
XD1000 example application makes use of DMA engines in 

the FPGA to transfer data to and from the host memory. 

This works well when the emulated device is accessed only 

through a driver, which can set up the transfers. When any 

size of transfer may be used, this asymmetric performance 

must be taken into account.  

Even with 64-byte transfers, write buffering must be 

used, since the DRAM controller has a width of 128 bytes. 

This means that 128 bytes must be read from DRAM before 

64 bytes can be written. Much of the complexity involved in 

creating an application with HyperTransport is a product of 
the different widths. The 32-bit HT bus protocol is 

converted by the core to 64-bit data for processing on the 

FPGA, since FPGAs make better use of wide widths than 

high clock rates. These data words must be assembled for 

the DRAM controller. In order to manage this complexity, 

all writes to RAM are handled by the write buffer, as are 

any reads that are smaller than 64-bytes. 

III. APPLICATIONS 

Many areas of system design can be explored using 
emulation. Three of the areas that seem most promising are: 

adding non-volatile memory (NVRAM), adding an 

application-specific coprocessor (or changing the way one is 

integrated with the system), and changing the memory 

hierarchy. 

A. Non-volatile Memories 

Nonvolatile memory technology is advancing. Flash 

memory is being used as a disk replacement in performance-

critical applications. Other technologies, such as phase-

change memory (PCM) and spin-torque transfer memory 

(STTM), are also being developed. Their densities are 

increasing, and they may be included in future computing 

systems. 

These technologies differ from the DRAM in several 

important ways, which will influence their integration into 

computer systems. The two most obvious differences are 

asymmetric access times for writes and reads, and the need 

for wear leveling. Both of these factors will influence the 
design of memory controllers and the resulting performance 

of applications. 

Building prototype systems is prohibitively expensive 

for exploring the design space, and cannot be done before 

devices are produced. In order to explore the design space, 

tools must be developed that will allow accurate 

performance comparisons for different organizations, block 

sizes, and wear-leveling and buffering algorithms. 

The emulation system of Figure 1 can be used to 

explore design choices and the interactions of applications 

with up to 4 GB of NVRAM connected to the system. 
Programmable delays can be added to the DRAM controller 

[10] and/or the write buffer in order to more accurately 

model the access latencies of each technology.  

B. Coprocessors 

One way to increase the time and power efficiency of 

computation is to use application-specific processors. Many 
applications have abundant available parallelism. This 

parallelism can be efficiently exploited by architectures 

combining many simple, low-power processing elements. 

General-purpose computing on graphics processing units 

(GPGPU) is an example of this. The connections between 

the GPU, the CPU, and memory affect the performance of 

the application. This could affect how the work is divided 

among processing units. 

The same architectural questions can be explored for 

general graphics processing. AMD’s Fusion architecture 

more tightly couples the GPU and the CPU in order to 
achieve higher performance, lower power consumption, or 

both. An emulated system can be used to explore the design 

space and performance benefits of such a system before it is 

built. 
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C. Memory Hierarchies 

The increasing gap between main memory and CPU 

speed has increased the importance of the memory hierarchy 

in system performance.  Much of the area on recent CPU 

dies is dedicated to caches. There is a large design space to 

be explored, and its complexity is increasing with the 

number of processor cores. Structures such as coherence 

directories are good candidates for emulation, since they can 

be implemented with the RAM resources of the FPGA. 

One extension to the memory hierarchy which can be 

explored using emulation is a hardware single-level store, 

which moves control of swapping pages of memory from 
the OS into hardware. Swapping is a feature of virtual 

memory when the virtual memory space is larger than 

physical RAM. Memory pages are swapped when pages of 

data are transferred to and from the secondary store to 

maintain the illusion of large memory space. If a page is 

chosen for replacement that will be used again soon, its next 

access will cause another swap. Since secondary storage is 

much slower than RAM, minimizing swapping is essential 

to performance. Some related features, such as file caching, 

can also be controlled by the same hardware, since the files 

reside in the secondary store and get moved to RAM for 
faster access. 

Hardware paging support is interesting because there is 

limited information available to the OS about page usage. 

Usage bits are only updated during page table walks, which 

occur on TLB misses. In order for an OS to collect more 

usage information, it must invalidate TLB entries to cause 

misses, which is expensive. With more information, paging 

algorithms make better replacement decisions, increasing 

performance [11]. A hardware paging implementation 

would be aware of all memory accesses that miss the last 

level of cache, and therefore have more information on 

which to base page replacement decisions. 
Moving paging support out of the OS is not a new idea. 

The IBM AS/400 and its predecessor, the IBM System/38, 

implement paging in virtual machines. This simplifies 

software development, since from the perspective of the OS 

and applications, memory is flat and uniform [12]. A virtual 

machine implementation of paging suffers the same 

performance penalties as other software implementations, 

due to limited usage information,.  

IV. PERFORMANCE 

Performance measurements and comparisons are two of 

the most compelling reasons to emulate modifications to 
computer systems. Although the most straightforward way 

to measure system performance is by measuring wall clock 

time, it is not the most helpful metric for comparing 

emulated systems. Although the FPGAs used for emulation 

continue to improve in speed, they are not as fast as a final 

implementation. 

A. Preliminary Performance Measurements 

In  order to understand the performance characteristics 

of a system, simple latency and bandwidth measurements 

are taken. The system shown in Figure 1 is booted into 

Linux, and a modified device driver based on the example 

XD1000 driver is loaded. A simple application is then run, 

which calls mmap to obtain a pointer to the 4GB of memory 

on the XD1000. Once the program has a pointer, it is 

straightforward to write timing loops which measure the 

average latency and bandwidth of memory accesses. The 

measured latencies can be verified using Altera SignalTap 
to view the HT requests. 

The latency for each read or write targeting the DRAM 

is around 850 ns, with the write buffer implemented, but no 

workload-specific optimizations. This yields varying 

bandwidths depending on the transaction types and sizes, as 

shown in Table 1. Because the write buffer is organized as a 

cache, each write to a new line causes a line fill from the 

DRAM, and possibly a write back for dirty data. An obvious 

performance optimization is to bypass the write buffer when 

multiple consecutive writes are received, and write a full 

128 bytes directly to DRAM. Avoiding the write buffer in 
this way would substantially increase the write bandwidth. 

Note that read bandwidth is significantly lower than write 

bandwidth because each read must complete before software 

can issue another read; writes have no such restriction. 

Running two threads nearly doubles the read bandwidth 

because the two processor cores can issue reads in parallel, 

but it has no effect on write bandwidth. 

B. Relative Performance Comparisons 

Using absolute performance numbers with emulated 

architectures can be misleading. The solution is to use 

relative performance comparisons. Some of the factors that 

make relative performance comparisons more appropriate 

than using absolute performance include: the lower 

frequency of an FPGA implementation of HyperTransport, 

the fact that the emulated prototype may not be fully 

optimized, and even restrictions with the NDA in publishing 

performance numbers for the coherent core. 

In order to compare the performance of multiple non-
volatile memory technologies and their controllers, the path 

TABLE II.  READ AND WRITE BANDWIDTH MEASUREMENTS. 

Transaction Type Bandwidth 

32-bit writes 60 MB/s 

64-bit writes 90 MB/s 

64-byte writes (write-combining) 120 MB/s 

32-bit reads 5.5 MB/s 

32-bit reads (two threads) 11 MB/s 

64-byte reads (cacheable 32-bit) 50 MB/s 

64-byte reads (two threads) 92 MB/s 

 

TABLE I.  READ AND WRITE BANDWIDTH MEASUREMENTS. 

Transaction Type Bandwidth (MB/s) 

32-bit writes  60 

64-bit writes  90 

64-byte writes (write-combining)  120 

32-bit reads  5.5 

32-bit reads (two threads)   11 

64-byte reads (cacheable 32-bit)  50 

64-byte reads (two threads)  92 

 

Proceedings of the Second International Workshop on  
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

4



for each access should be equivalent. This means that a 

comparison between the delayed RAM on the XD1000 and 

the RAM attached to the host Opteron would be much less 

informative than a comparison between two delay settings 

on the XD1000. 

For the case of an emulated single-level store, the only 
DRAM in the system is attached to the XD1000, and all 

requests must traverse the same path. The difference being 

measured can then be attributed to the difference in the 

paging algorithm, and the information available to it. The 

latency of a memory access in this scenario is the sum of the 

latencies due to: the HT link, the write buffer access, the 

DRAM access, and in the case of a miss, a page transfer 

from the backing store to DRAM.  

When making the baseline measurements, the Opteron 

is initialized to access 4 GB of RAM with the XD1000 as 

the only memory controller. Memory needs beyond 4 GB 

must be supplied by OS-controlled paging to the secondary 
storage. The baseline is then compared to the same 

configuration, but hardware paging is enabled and the 

XD1000 is initialized as a memory controller with up to 1 

TB of storage addressable as RAM. The 1 TB limit is a hard 

limit dictated by the 40 physical address bits available to the 

processors. Newer Opterons have 48 physical address bits, 

expanding their addressing capabilities to 256 TB. 

V. RELATED WORK 

There are many system-level simulators, but there are 

relatively few systems which add emulation to an existing 

system using FPGAs. In this section, a case is presented for 
using emulation in place of full-system simulation. This 

analysis is followed by a discussion of three related 

emulation systems, and two FPGA prototype systems that 

use HT to enable low-latency cluster interconnects.  

A. Emulation vs. Simulation 

Several factors make system-level simulation time 
consuming, expensive, and error-prone. These include the 

asynchronous interactions among multiple devices, the 

closed nature of many CPUs, the complexity of these CPUs 

and their interconnects, and the increasing sizes of caching 

structures and translation look-aside buffers (TLBs). 

Since modern computer systems incorporate many 

diverse components, modeling their interactions faithfully 

can be difficult. Computer systems include devices ranging 

from PCI Express (PCIe) graphics cards to hard drives to 

serial ports, with widely varying performance characteristics 

and latencies. Modeling the system at a sufficient level of 
detail to accurately reflect system performance is a 

challenge. 

Modern CPUs have complex performance 

characteristics, which can be difficult to model [13]. 

Although some high-level details of CPU architectures are 

available, many of the details needed for accurately 

simulating their performance are not. Even if all the design 

parameters are available, the complexity of faithful 

modeling slows simulations significantly, and it is difficult 

to assure the correctness of the final model. This also 

applies to the interconnections among CPU cores and the 

connections to other subsystems. Multi-core architectures 

exacerbate this problem. 

As storage structures such as caches and TLBs increase 
in size, the amount of simulated run time needed in order to 

characterize their performance increases. Measuring the 

benefit of another level of cache, for example, will require 

the benchmark to generate many misses in the previous 

levels. 

Emulation is a promising way to reduce the complexity 

involved in understanding the effects on performance of 

modifications to an existing system. FPGAs combine 

programmable logic and I/O interfaces, and some contain 

implementations of simple microprocessors. This makes 

them suited to implement a wide variety of functions for 

experimentation. Their performance is limited in terms of 
maximum clock frequency, but many times that can be 

mitigated by the high degree of fine-grained parallelism 

available in them. 

Emulated subsystems implemented in an FPGA run fast 

enough to allow multiple benchmark runs. These multiple 

runs add statistical significance to performance 

measurements of the emulated systems and minimize the 

effect of performance variability of the other system 

components. 

B. Emulation Systems 

Three related FPGA emulation systems are Flexible 

Architecture Research Machine (FARM) [14], Research 

Accelerator for Multiple Processors (RAMP) [13, 15], and 

High-performance Advanced Storage Technology Emulator 

(HASTE) [10].  

FARM is similar to this work, in that it modifies and 

repurposes an existing FPGA and Opteron system in order 
to explore system architecture. FARM differs from using an 

in-socket accelerator because the original system is much 

more expensive, and the FPGAs are not directly connected 

to the DDR or chipset on the motherboard.  

RAMP is a collaborative effort by a number of 

researchers to enable comparable architectural research and 

bring down the costs associated with FPGA emulation, 

specifically for many simple cores and their interconnects. 

In order to achieve this goal, RAMP specifies FPGA boards, 

and encourages the sharing and reuse of design components 

for the FPGA designs. RAMP focuses on the challenges of 
multi-core architectures and the software which runs on 

them. 

HASTE is a system constructed by UCSD to evaluate 

NVRAM technologies in supercomputing applications. 

HASTE connects DRAM with an FPGA controller on a 

PCIe card, and is compared with the system DRAM and 

solid-state disks to explore the performance of storage 

devices built from emerging NVRAM technologies.  
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C. Low-Latency Cluster Interconnects 

Two systems which use FPGAs with HT to prototype 

low-latency cluster interconnects are the Virtualized Engine 

for Low Overhead (VELO) [16], and the Hyper Parallel 

Processing (HPP) architecture [17]. 

VELO is an implementation of a network engine using 

an HTX card. The resulting network exhibits latencies of 

just over 1 μs, including routing. 

 HPP connects multiple motherboards with an HT 

backplane and a switch implemented with an FPGA. The 

HPP prototype demonstrates low-latency, high-bandwidth 

connections between motherboards in a prototype high- 
performance, low-cost cluster.  

Both VELO and HPP are specifically designed to 

prototype connections between systems, whereas systems 

using in-socket emulators are better suited for emulating and 

prototyping modifications to parts of a single system. 

VI. CONCLUSION 

This work demonstrated how HT and FPGAs can be 

used in commodity systems to emulate and evaluate the 

performance of proposed system modifications. The ability 

of the XD1000 to connect directly to the motherboard HT 

links was shown to allow the exploration of many system 
configurations. Two of these configurations were presented, 

along with preliminary performance results from one of 

them. These emulation systems were presented as a viable 

way to evaluate new technologies such as NVRAM, and the 

many ways that they can be incorporated into computer 

systems. 
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