28 research outputs found

    Dedekind Zeta Functions and the Complexity of Hilbert's Nullstellensatz

    Full text link
    Let HN denote the problem of determining whether a system of multivariate polynomials with integer coefficients has a complex root. It has long been known that HN in P implies P=NP and, thanks to recent work of Koiran, it is now known that the truth of the Generalized Riemann Hypothesis (GRH) yields the implication that HN not in NP implies P is not equal to NP. We show that the assumption of GRH in the latter implication can be replaced by either of two more plausible hypotheses from analytic number theory. The first is an effective short interval Prime Ideal Theorem with explicit dependence on the underlying field, while the second can be interpreted as a quantitative statement on the higher moments of the zeroes of Dedekind zeta functions. In particular, both assumptions can still hold even if GRH is false. We thus obtain a new application of Dedekind zero estimates to computational algebraic geometry. Along the way, we also apply recent explicit algebraic and analytic estimates, some due to Silberman and Sombra, which may be of independent interest.Comment: 16 pages, no figures. Paper corresponds to a semi-plenary talk at FoCM 2002. This version corrects some minor typos and adds an acknowledgements sectio

    On the frontiers of polynomial computations in tropical geometry

    Full text link
    We study some basic algorithmic problems concerning the intersection of tropical hypersurfaces in general dimension: deciding whether this intersection is nonempty, whether it is a tropical variety, and whether it is connected, as well as counting the number of connected components. We characterize the borderline between tractable and hard computations by proving NP\mathcal{NP}-hardness and #P\mathcal{P}-hardness results under various strong restrictions of the input data, as well as providing polynomial time algorithms for various other restrictions.Comment: 17 pages, 5 figures. To appear in Journal of Symbolic Computatio

    The Multivariate Resultant is NP-hard in any Characteristic

    Get PDF
    The multivariate resultant is a fundamental tool of computational algebraic geometry. It can in particular be used to decide whether a system of n homogeneous equations in n variables is satisfiable (the resultant is a polynomial in the system's coefficients which vanishes if and only if the system is satisfiable). In this paper we present several NP-hardness results for testing whether a multivariate resultant vanishes, or equivalently for deciding whether a square system of homogeneous equations is satisfiable. Our main result is that testing the resultant for zero is NP-hard under deterministic reductions in any characteristic, for systems of low-degree polynomials with coefficients in the ground field (rather than in an extension). We also observe that in characteristic zero, this problem is in the Arthur-Merlin class AM if the generalized Riemann hypothesis holds true. In positive characteristic, the best upper bound remains PSPACE.Comment: 13 page

    Near NP-Completeness for Detecting p-adic Rational Roots in One Variable

    Full text link
    We show that deciding whether a sparse univariate polynomial has a p-adic rational root can be done in NP for most inputs. We also prove a polynomial-time upper bound for trinomials with suitably generic p-adic Newton polygon. We thus improve the best previous complexity upper bound of EXPTIME. We also prove an unconditional complexity lower bound of NP-hardness with respect to randomized reductions for general univariate polynomials. The best previous lower bound assumed an unproved hypothesis on the distribution of primes in arithmetic progression. We also discuss how our results complement analogous results over the real numbers.Comment: 8 pages in 2 column format, 1 illustration. Submitted to a conferenc

    Some Speed-Ups and Speed Limits for Real Algebraic Geometry

    Get PDF
    We give new positive and negative results (some conditional) on speeding up computational algebraic geometry over the reals: (1) A new and sharper upper bound on the number of connected components of a semialgebraic set. Our bound is novel in that it is stated in terms of the volumes of certain polytopes and, for a large class of inputs, beats the best previous bounds by a factor exponential in the number of variables. (2) A new algorithm for approximating the real roots of certain sparse polynomial systems. Two features of our algorithm are (a) arithmetic complexity polylogarithmic in the degree of the underlying complex variety (as opposed to the super-linear dependence in earlier algorithms) and (b) a simple and efficient generalization to certain univariate exponential sums. (3) Detecting whether a real algebraic surface (given as the common zero set of some input straight-line programs) is not smooth can be done in polynomial time within the classical Turing model (resp. BSS model over C) only if P=NP (resp. NP<=BPP). The last result follows easily from an unpublished result of Steve Smale.Comment: This is the final journal version which will appear in Journal of Complexity. More typos are corrected, and a new section is added where the bounds here are compared to an earlier result of Benedetti, Loeser, and Risler. The LaTeX source needs the ajour.cls macro file to compil

    The node-deletion problem for hereditary properties is NP-complete

    Get PDF
    AbstractWe consider the family of graph problems called node-deletion problems, defined as follows; For a fixed graph property Π, what is the minimum number of nodes which must be deleted from a given graph so that the resulting subgraph satisfies Π? We show that if Π is nontrivial and hereditary on induced subgraphs, then the node-deletion problem for Π is NP-complete for both undirected and directed graphs

    Master index volumes 31–40

    Get PDF

    Polynomial-Time Amoeba Neighborhood Membership and Faster Localized Solving

    Full text link
    We derive efficient algorithms for coarse approximation of algebraic hypersurfaces, useful for estimating the distance between an input polynomial zero set and a given query point. Our methods work best on sparse polynomials of high degree (in any number of variables) but are nevertheless completely general. The underlying ideas, which we take the time to describe in an elementary way, come from tropical geometry. We thus reduce a hard algebraic problem to high-precision linear optimization, proving new upper and lower complexity estimates along the way.Comment: 15 pages, 9 figures. Submitted to a conference proceeding

    Efficiently Detecting Torsion Points and Subtori

    Full text link
    Suppose X is the complex zero set of a finite collection of polynomials in Z[x_1,...,x_n]. We show that deciding whether X contains a point all of whose coordinates are d_th roots of unity can be done within NP^NP (relative to the sparse encoding), under a plausible assumption on primes in arithmetic progression. In particular, our hypothesis can still hold even under certain failures of the Generalized Riemann Hypothesis, such as the presence of Siegel-Landau zeroes. Furthermore, we give a similar (but UNconditional) complexity upper bound for n=1. Finally, letting T be any algebraic subgroup of (C^*)^n we show that deciding whether X contains T is coNP-complete (relative to an even more efficient encoding),unconditionally. We thus obtain new non-trivial families of multivariate polynomial systems where deciding the existence of complex roots can be done unconditionally in the polynomial hierarchy -- a family of complexity classes lying between PSPACE and P, intimately connected with the P=?NP Problem. We also discuss a connection to Laurent's solution of Chabauty's Conjecture from arithmetic geometry.Comment: 21 pages, no figures. Final version, with additional commentary and references. Also fixes a gap in Theorems 2 (now Theorem 1.3) regarding translated subtor
    corecore