39,730 research outputs found

    Non-asymptotic Upper Bounds for Deletion Correcting Codes

    Full text link
    Explicit non-asymptotic upper bounds on the sizes of multiple-deletion correcting codes are presented. In particular, the largest single-deletion correcting code for qq-ary alphabet and string length nn is shown to be of size at most qn−q(q−1)(n−1)\frac{q^n-q}{(q-1)(n-1)}. An improved bound on the asymptotic rate function is obtained as a corollary. Upper bounds are also derived on sizes of codes for a constrained source that does not necessarily comprise of all strings of a particular length, and this idea is demonstrated by application to sets of run-length limited strings. The problem of finding the largest deletion correcting code is modeled as a matching problem on a hypergraph. This problem is formulated as an integer linear program. The upper bound is obtained by the construction of a feasible point for the dual of the linear programming relaxation of this integer linear program. The non-asymptotic bounds derived imply the known asymptotic bounds of Levenshtein and Tenengolts and improve on known non-asymptotic bounds. Numerical results support the conjecture that in the binary case, the Varshamov-Tenengolts codes are the largest single-deletion correcting codes.Comment: 18 pages, 4 figure

    On the maximal sum of exponents of runs in a string

    Get PDF
    A run is an inclusion maximal occurrence in a string (as a subinterval) of a repetition vv with a period pp such that 2p≤∣v∣2p \le |v|. The exponent of a run is defined as ∣v∣/p|v|/p and is ≥2\ge 2. We show new bounds on the maximal sum of exponents of runs in a string of length nn. Our upper bound of 4.1n4.1n is better than the best previously known proven bound of 5.6n5.6n by Crochemore & Ilie (2008). The lower bound of 2.035n2.035n, obtained using a family of binary words, contradicts the conjecture of Kolpakov & Kucherov (1999) that the maximal sum of exponents of runs in a string of length nn is smaller than 2n2nComment: 7 pages, 1 figur

    On the maximal number of cubic subwords in a string

    Full text link
    We investigate the problem of the maximum number of cubic subwords (of the form wwwwww) in a given word. We also consider square subwords (of the form wwww). The problem of the maximum number of squares in a word is not well understood. Several new results related to this problem are produced in the paper. We consider two simple problems related to the maximum number of subwords which are squares or which are highly repetitive; then we provide a nontrivial estimation for the number of cubes. We show that the maximum number of squares xxxx such that xx is not a primitive word (nonprimitive squares) in a word of length nn is exactly ⌊n2⌋−1\lfloor \frac{n}{2}\rfloor - 1, and the maximum number of subwords of the form xkx^k, for k≥3k\ge 3, is exactly n−2n-2. In particular, the maximum number of cubes in a word is not greater than n−2n-2 either. Using very technical properties of occurrences of cubes, we improve this bound significantly. We show that the maximum number of cubes in a word of length nn is between (1/2)n(1/2)n and (4/5)n(4/5)n. (In particular, we improve the lower bound from the conference version of the paper.)Comment: 14 page
    • …
    corecore