295 research outputs found

    Differential-Algebraic Equations and Beyond: From Smooth to Nonsmooth Constrained Dynamical Systems

    Get PDF
    The present article presents a summarizing view at differential-algebraic equations (DAEs) and analyzes how new application fields and corresponding mathematical models lead to innovations both in theory and in numerical analysis for this problem class. Recent numerical methods for nonsmooth dynamical systems subject to unilateral contact and friction illustrate the topicality of this development.Comment: Preprint of Book Chapte

    Isogeometric analysis applied to frictionless large deformation elastoplastic contact

    Get PDF
    This paper focuses on the application of isogeometric analysis to model frictionless large deformation contact between deformable bodies and rigid surfaces that may be represented by analytical functions. The contact constraints are satisfied exactly with the augmented Lagrangian method, and treated with a mortar-based approach combined with a simplified integration method to avoid segmentation of the contact surfaces. The spatial discretization of the deformable body is performed with NURBS and C0-continuous Lagrange polynomial elements. The numerical examples demonstrate that isogeometric surface discretization delivers more accurate and robust predictions of the response compared to Lagrange discretizations

    Power Allocation and Time-Domain Artificial Noise Design for Wiretap OFDM with Discrete Inputs

    Full text link
    Optimal power allocation for orthogonal frequency division multiplexing (OFDM) wiretap channels with Gaussian channel inputs has already been studied in some previous works from an information theoretical viewpoint. However, these results are not sufficient for practical system design. One reason is that discrete channel inputs, such as quadrature amplitude modulation (QAM) signals, instead of Gaussian channel inputs, are deployed in current practical wireless systems to maintain moderate peak transmission power and receiver complexity. In this paper, we investigate the power allocation and artificial noise design for OFDM wiretap channels with discrete channel inputs. We first prove that the secrecy rate function for discrete channel inputs is nonconcave with respect to the transmission power. To resolve the corresponding nonconvex secrecy rate maximization problem, we develop a low-complexity power allocation algorithm, which yields a duality gap diminishing in the order of O(1/\sqrt{N}), where N is the number of subcarriers of OFDM. We then show that independent frequency-domain artificial noise cannot improve the secrecy rate of single-antenna wiretap channels. Towards this end, we propose a novel time-domain artificial noise design which exploits temporal degrees of freedom provided by the cyclic prefix of OFDM systems {to jam the eavesdropper and boost the secrecy rate even with a single antenna at the transmitter}. Numerical results are provided to illustrate the performance of the proposed design schemes.Comment: 12 pages, 7 figures, accepted by IEEE Transactions on Wireless Communications, Jan. 201

    Isogeometric dual mortar methods for computational contact mechanics

    Get PDF
    International audienceIn recent years, isogeometric analysis (IGA) has received great attention in many fields of computational mechanics research. Especially for computational contact mechanics, an exact and smooth surface representation is highly desirable. As a consequence, many well-known finite e lement m ethods a nd a lgorithms f or c ontact m echanics h ave b een t ransferred t o I GA. I n t he present contribution, the so-called dual mortar method is investigated for both contact mechanics and classical domain decomposition using NURBS basis functions. In contrast to standard mortar methods, the use of dual basis functions for the Lagrange multiplier based on the mathematical concept of biorthogonality enables an easy elimination of the additional Lagrange multiplier degrees of freedom from the global system. This condensed system is smaller in size, and no longer of saddle point type but positive definite. A very simple and commonly used element-wise construction of the dual basis functions is directly transferred to the IGA case. The resulting Lagrange multiplier interpolation satisfies discrete inf–sup stability and biorthogonality, however, the reproduction order is limited to one. In the domain decomposition case, this results in a limitation of the spatial convergence order to O(h 3 /2) in the energy norm, whereas for unilateral contact, due to the lower regularity of the solution, optimal convergence rates are still met. Numerical examples are presented that illustrate these theoretical considerations on convergence rates and compare the newly developed isogeometric dual mortar contact formulation with its standard mortar counterpart as well as classical finite elements based on first and second order Lagrange polynomials

    Smooth methods of multipliers for complementarity problems

    Get PDF
    corecore